/* Copyright 2021, The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF CALIFORNIA OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of The Regents of the University of California. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * TX FIFO */ module tx_fifo # ( // FIFO depth in words (each FIFO) // KEEP_WIDTH words per cycle if KEEP_ENABLE set // Rounded up to nearest power of 2 cycles parameter FIFO_DEPTH = 4096, // Number of AXI stream outputs parameter PORTS = 4, // Width of input AXI stream interfaces in bits parameter S_DATA_WIDTH = 8, // Propagate tkeep signal parameter S_KEEP_ENABLE = (S_DATA_WIDTH>8), // tkeep signal width (words per cycle) parameter S_KEEP_WIDTH = (S_DATA_WIDTH/8), // Width of output AXI stream interfaces in bits parameter M_DATA_WIDTH = 8, // Propagate tkeep signal parameter M_KEEP_ENABLE = (M_DATA_WIDTH>8), // tkeep signal width (words per cycle) parameter M_KEEP_WIDTH = (M_DATA_WIDTH/8), // Propagate tid signal parameter ID_ENABLE = 0, // tid signal width parameter ID_WIDTH = 8, // output tdest signal width parameter M_DEST_WIDTH = 3, // input tdest signal width // must be wide enough to uniquely address outputs parameter S_DEST_WIDTH = M_DEST_WIDTH+$clog2(PORTS), // Propagate tuser signal parameter USER_ENABLE = 1, // tuser signal width parameter USER_WIDTH = 1, // number of RAM pipeline registers parameter RAM_PIPELINE = 1 ) ( input wire clk, input wire rst, /* * AXI Stream input */ input wire [S_DATA_WIDTH-1:0] s_axis_tdata, input wire [S_KEEP_WIDTH-1:0] s_axis_tkeep, input wire s_axis_tvalid, output wire s_axis_tready, input wire s_axis_tlast, input wire [ID_WIDTH-1:0] s_axis_tid, input wire [S_DEST_WIDTH-1:0] s_axis_tdest, input wire [USER_WIDTH-1:0] s_axis_tuser, /* * AXI Stream outputs */ output wire [PORTS*M_DATA_WIDTH-1:0] m_axis_tdata, output wire [PORTS*M_KEEP_WIDTH-1:0] m_axis_tkeep, output wire [PORTS-1:0] m_axis_tvalid, input wire [PORTS-1:0] m_axis_tready, output wire [PORTS-1:0] m_axis_tlast, output wire [PORTS*ID_WIDTH-1:0] m_axis_tid, output wire [PORTS*M_DEST_WIDTH-1:0] m_axis_tdest, output wire [PORTS*USER_WIDTH-1:0] m_axis_tuser, /* * Status */ output wire [PORTS-1:0] status_overflow, output wire [PORTS-1:0] status_bad_frame, output wire [PORTS-1:0] status_good_frame ); wire [PORTS*S_DATA_WIDTH-1:0] axis_fifo_tdata; wire [PORTS*S_KEEP_WIDTH-1:0] axis_fifo_tkeep; wire [PORTS-1:0] axis_fifo_tvalid; wire [PORTS-1:0] axis_fifo_tready; wire [PORTS-1:0] axis_fifo_tlast; wire [PORTS*ID_WIDTH-1:0] axis_fifo_tid; wire [PORTS*M_DEST_WIDTH-1:0] axis_fifo_tdest; wire [PORTS*USER_WIDTH-1:0] axis_fifo_tuser; generate genvar n; if (PORTS > 1) begin : demux axis_demux #( .M_COUNT(PORTS), .DATA_WIDTH(S_DATA_WIDTH), .KEEP_ENABLE(S_KEEP_ENABLE), .KEEP_WIDTH(S_KEEP_WIDTH), .ID_ENABLE(ID_ENABLE), .ID_WIDTH(ID_WIDTH), .DEST_ENABLE(1), .S_DEST_WIDTH(S_DEST_WIDTH), .M_DEST_WIDTH(M_DEST_WIDTH), .USER_ENABLE(USER_ENABLE), .USER_WIDTH(USER_WIDTH), .TDEST_ROUTE(1) ) switch_inst ( .clk(clk), .rst(rst), // AXI Stream input .s_axis_tdata(s_axis_tdata), .s_axis_tkeep(s_axis_tkeep), .s_axis_tvalid(s_axis_tvalid), .s_axis_tready(s_axis_tready), .s_axis_tlast(s_axis_tlast), .s_axis_tid(s_axis_tid), .s_axis_tdest(s_axis_tdest), .s_axis_tuser(s_axis_tuser), // AXI Stream outputs .m_axis_tdata(axis_fifo_tdata), .m_axis_tkeep(axis_fifo_tkeep), .m_axis_tvalid(axis_fifo_tvalid), .m_axis_tready(axis_fifo_tready), .m_axis_tlast(axis_fifo_tlast), .m_axis_tid(axis_fifo_tid), .m_axis_tdest(axis_fifo_tdest), .m_axis_tuser(axis_fifo_tuser), // Control .enable(1), .drop(0), .select(0) ); end else begin assign axis_fifo_tdata = s_axis_tdata; assign axis_fifo_tkeep = s_axis_tkeep; assign axis_fifo_tvalid = s_axis_tvalid; assign s_axis_tready = axis_fifo_tready; assign axis_fifo_tlast = s_axis_tlast; assign axis_fifo_tid = s_axis_tid; assign axis_fifo_tdest = s_axis_tdest; assign axis_fifo_tuser = s_axis_tuser; end for (n = 0; n < PORTS; n = n + 1) begin : fifo axis_fifo_adapter #( .DEPTH(FIFO_DEPTH), .S_DATA_WIDTH(S_DATA_WIDTH), .S_KEEP_ENABLE(S_KEEP_ENABLE), .S_KEEP_WIDTH(S_KEEP_WIDTH), .M_DATA_WIDTH(M_DATA_WIDTH), .M_KEEP_ENABLE(M_KEEP_ENABLE), .M_KEEP_WIDTH(M_KEEP_WIDTH), .ID_ENABLE(ID_ENABLE), .ID_WIDTH(ID_WIDTH), .DEST_ENABLE(1), .DEST_WIDTH(M_DEST_WIDTH), .USER_ENABLE(USER_ENABLE), .USER_WIDTH(USER_WIDTH), .RAM_PIPELINE(RAM_PIPELINE), .FRAME_FIFO(1), .USER_BAD_FRAME_VALUE(1'b1), .USER_BAD_FRAME_MASK(1'b1), .DROP_BAD_FRAME(USER_ENABLE), .DROP_WHEN_FULL(0) ) fifo_inst ( .clk(clk), .rst(rst), // AXI input .s_axis_tdata(axis_fifo_tdata[n*S_DATA_WIDTH +: S_DATA_WIDTH]), .s_axis_tkeep(axis_fifo_tkeep[n*S_KEEP_WIDTH +: S_KEEP_WIDTH]), .s_axis_tvalid(axis_fifo_tvalid[n +: 1]), .s_axis_tready(axis_fifo_tready[n +: 1]), .s_axis_tlast(axis_fifo_tlast[n +: 1]), .s_axis_tid(axis_fifo_tid[n*ID_WIDTH +: ID_WIDTH]), .s_axis_tdest(axis_fifo_tdest[n*M_DEST_WIDTH +: M_DEST_WIDTH]), .s_axis_tuser(axis_fifo_tuser[n*USER_WIDTH +: USER_WIDTH]), // AXI output .m_axis_tdata(m_axis_tdata[n*M_DATA_WIDTH +: M_DATA_WIDTH]), .m_axis_tkeep(m_axis_tkeep[n*M_KEEP_WIDTH +: M_KEEP_WIDTH]), .m_axis_tvalid(m_axis_tvalid[n +: 1]), .m_axis_tready(m_axis_tready[n +: 1]), .m_axis_tlast(m_axis_tlast[n +: 1]), .m_axis_tid(m_axis_tid[n*ID_WIDTH +: ID_WIDTH]), .m_axis_tdest(m_axis_tdest[n*M_DEST_WIDTH +: M_DEST_WIDTH]), .m_axis_tuser(m_axis_tuser[n*USER_WIDTH +: USER_WIDTH]), // Status .status_overflow(status_overflow[n]), .status_bad_frame(status_bad_frame[n]), .status_good_frame(status_good_frame[n]) ); end endgenerate endmodule `resetall