/* Copyright 2019, The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF CALIFORNIA OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of The Regents of the University of California. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * Receive hashing module */ module rx_hash # ( // Width of AXI stream interfaces in bits parameter DATA_WIDTH = 256, // AXI stream tkeep signal width (words per cycle) parameter KEEP_WIDTH = (DATA_WIDTH/8) ) ( input wire clk, input wire rst, /* * AXI input */ input wire [DATA_WIDTH-1:0] s_axis_tdata, input wire [KEEP_WIDTH-1:0] s_axis_tkeep, input wire s_axis_tvalid, input wire s_axis_tlast, /* * Control */ input wire [40*8-1:0] hash_key, /* * Hash output */ output wire [31:0] m_axis_hash, output wire [3:0] m_axis_hash_type, output wire m_axis_hash_valid ); parameter CYCLE_COUNT = (38+KEEP_WIDTH-1)/KEEP_WIDTH; parameter PTR_WIDTH = $clog2(CYCLE_COUNT); // bus width assertions initial begin if (KEEP_WIDTH * 8 != DATA_WIDTH) begin $error("Error: AXI stream interface requires byte (8-bit) granularity (instance %m)"); $finish; end end /* TCP/UDP Frame (IPv4) Field Length Destination MAC address 6 octets Source MAC address 6 octets Ethertype (0x0800) 2 octets Version (4) 4 bits IHL (5-15) 4 bits DSCP (0) 6 bits ECN (0) 2 bits length 2 octets identification (0?) 2 octets flags (010) 3 bits fragment offset (0) 13 bits time to live (64?) 1 octet protocol (6 or 17) 1 octet header checksum 2 octets source IP 4 octets destination IP 4 octets options (IHL-5)*4 octets source port 2 octets desination port 2 octets other fields + payload TCP/UDP Frame (IPv6) Field Length Destination MAC address 6 octets Source MAC address 6 octets Ethertype (0x86dd) 2 octets Version (4) 4 bits Traffic class 8 bits Flow label 20 bits length 2 octets next header (6 or 17) 1 octet hop limit 1 octet source IP 16 octets destination IP 16 octets source port 2 octets desination port 2 octets other fields + payload */ reg active_reg = 1'b1, active_next; reg [PTR_WIDTH-1:0] ptr_reg = 0, ptr_next; reg [15:0] eth_type_reg = 15'd0, eth_type_next; reg [3:0] ihl_reg = 4'd0, ihl_next; reg [36*8-1:0] hash_data_reg = 0, hash_data_next; reg hash_data_ipv4_reg = 1'b0, hash_data_ipv4_next; reg hash_data_tcp_reg = 1'b0, hash_data_tcp_next; reg hash_data_udp_reg = 1'b0, hash_data_udp_next; reg [3:0] hash_data_type_reg = 4'b0000, hash_data_type_next; reg hash_data_valid_reg = 0, hash_data_valid_next; reg [31:0] hash_part_ipv4_ip_reg = 32'd0; reg [31:0] hash_part_ipv4_port_reg = 32'd0; reg hash_part_ipv4_reg = 0; reg hash_part_tcp_reg = 0; reg hash_part_udp_reg = 0; reg [3:0] hash_part_type_reg = 4'b0000; reg hash_part_valid_reg = 0; reg [31:0] hash_reg = 32'd0; reg [3:0] hash_type_reg = 4'b0000; reg hash_valid_reg = 0; assign m_axis_hash = hash_reg; assign m_axis_hash_type = hash_type_reg; assign m_axis_hash_valid = hash_valid_reg; function [31:0] hash_toep(input [36*8-1:0] data, input [5:0] len, input [40*8-1:0] key); integer i, j; begin hash_toep = 0; for (i = 0; i < len; i = i + 1) begin for (j = 0; j < 8; j = j + 1) begin if (data[i*8 + (7-j)]) begin hash_toep = hash_toep ^ key[40*8 - 32 - i*8 - j +: 32]; end end end end endfunction // compute toeplitz hashes wire [31:0] hash_part_ipv4_ip = hash_toep(hash_data_reg, 8, hash_key); wire [31:0] hash_part_ipv4_port = hash_toep(hash_data_reg >> 8*8, 4, hash_key << 8*8); always @* begin active_next = active_reg; ptr_next = ptr_reg; eth_type_next = eth_type_reg; ihl_next = ihl_reg; hash_data_next = hash_data_reg; hash_data_ipv4_next = hash_data_ipv4_reg; hash_data_tcp_next = hash_data_tcp_reg; hash_data_udp_next = hash_data_udp_reg; hash_data_type_next = hash_data_type_reg; hash_data_valid_next = 1'b0; if (s_axis_tvalid) begin if (active_reg) begin ptr_next = ptr_reg + 1; if (ptr_reg == 0) begin hash_data_ipv4_next = 1'b0; hash_data_tcp_next = 1'b0; hash_data_udp_next = 1'b0; end if (ptr_reg == 12/KEEP_WIDTH) begin // eth type MSB eth_type_next[15:8] = s_axis_tdata[(12%KEEP_WIDTH)*8 +: 8]; end if (ptr_reg == 13/KEEP_WIDTH) begin // eth type LSB eth_type_next[7:0] = s_axis_tdata[(13%KEEP_WIDTH)*8 +: 8]; // check eth type if (eth_type_next == 16'h0800) begin // ipv4 hash_data_ipv4_next = 1'b1; end else if (eth_type_next == 16'h86dd) begin // ipv6 // TODO end else begin // other hash_data_type_next = 4'b0000; hash_data_valid_next = 1'b1; active_next = 1'b0; end end if (ptr_reg == 14/KEEP_WIDTH) begin // capture IHL ihl_next = s_axis_tdata[(14%KEEP_WIDTH)*8 +: 8]; end if (hash_data_ipv4_next) begin if (ptr_reg == 23/KEEP_WIDTH) begin // capture protocol if (s_axis_tdata[(23%KEEP_WIDTH)*8 +: 8] == 8'h06 && ihl_next == 5) begin // TCP hash_data_tcp_next = 1'b1; end else if (s_axis_tdata[(23%KEEP_WIDTH)*8 +: 8] == 8'h11 && ihl_next == 5) begin // UDP hash_data_udp_next = 1'b1; end end if (ptr_reg == 26/KEEP_WIDTH) begin // capture source IP hash_data_next[7:0] = s_axis_tdata[(26%KEEP_WIDTH)*8 +: 8]; end if (ptr_reg == 27/KEEP_WIDTH) begin // capture source IP hash_data_next[15:8] = s_axis_tdata[(27%KEEP_WIDTH)*8 +: 8]; end if (ptr_reg == 28/KEEP_WIDTH) begin // capture source IP hash_data_next[23:16] = s_axis_tdata[(28%KEEP_WIDTH)*8 +: 8]; end if (ptr_reg == 29/KEEP_WIDTH) begin // capture source IP hash_data_next[31:24] = s_axis_tdata[(29%KEEP_WIDTH)*8 +: 8]; end if (ptr_reg == 30/KEEP_WIDTH) begin // capture dest IP hash_data_next[39:32] = s_axis_tdata[(30%KEEP_WIDTH)*8 +: 8]; end if (ptr_reg == 31/KEEP_WIDTH) begin // capture dest IP hash_data_next[47:40] = s_axis_tdata[(31%KEEP_WIDTH)*8 +: 8]; end if (ptr_reg == 32/KEEP_WIDTH) begin // capture dest IP hash_data_next[55:48] = s_axis_tdata[(32%KEEP_WIDTH)*8 +: 8]; end if (ptr_reg == 33/KEEP_WIDTH) begin // capture dest IP hash_data_next[63:56] = s_axis_tdata[(33%KEEP_WIDTH)*8 +: 8]; if (!(hash_data_tcp_next || hash_data_udp_next)) begin hash_data_type_next = {1'b0, 1'b0, 1'b0, 1'b1}; hash_data_valid_next = 1'b1; active_next = 1'b0; end end if (hash_data_tcp_next || hash_data_udp_next) begin // TODO IHL (skip options) if (ptr_reg == 34/KEEP_WIDTH) begin // capture source port hash_data_next[71:64] = s_axis_tdata[(34%KEEP_WIDTH)*8 +: 8]; end if (ptr_reg == 35/KEEP_WIDTH) begin // capture source port hash_data_next[79:72] = s_axis_tdata[(35%KEEP_WIDTH)*8 +: 8]; end if (ptr_reg == 36/KEEP_WIDTH) begin // capture dest port hash_data_next[87:80] = s_axis_tdata[(36%KEEP_WIDTH)*8 +: 8]; end if (ptr_reg == 37/KEEP_WIDTH) begin // capture dest port hash_data_next[95:88] = s_axis_tdata[(37%KEEP_WIDTH)*8 +: 8]; hash_data_type_next = {hash_data_udp_next, hash_data_tcp_next, 1'b0, 1'b1}; hash_data_valid_next = 1'b1; active_next = 1'b0; end end end end if (s_axis_tlast) begin if (active_next) begin hash_data_type_next = 4'b0000; hash_data_valid_next = 1'b1; end ptr_next = 0; active_next = 1'b1; end end end always @(posedge clk) begin active_reg <= active_next; ptr_reg <= ptr_next; eth_type_reg <= eth_type_next; ihl_reg <= ihl_next; hash_data_reg <= hash_data_next; hash_data_ipv4_reg <= hash_data_ipv4_next; hash_data_tcp_reg <= hash_data_tcp_next; hash_data_udp_reg <= hash_data_udp_next; hash_data_type_reg <= hash_data_type_next; hash_data_valid_reg <= hash_data_valid_next; hash_part_ipv4_ip_reg <= hash_part_ipv4_ip; hash_part_ipv4_port_reg <= hash_part_ipv4_port; hash_part_ipv4_reg <= hash_data_ipv4_reg; hash_part_tcp_reg <= hash_data_tcp_reg; hash_part_udp_reg <= hash_data_udp_reg; hash_part_type_reg <= hash_data_type_reg; hash_part_valid_reg <= hash_data_valid_reg; if (hash_part_ipv4_reg) begin if (hash_part_tcp_reg || hash_part_udp_reg) begin hash_reg <= hash_part_ipv4_ip_reg ^ hash_part_ipv4_port_reg; end else begin hash_reg <= hash_part_ipv4_ip_reg; end end else begin hash_reg <= 0; end hash_type_reg <= hash_part_type_reg; hash_valid_reg <= hash_part_valid_reg; if (rst) begin active_reg <= 1'b1; ptr_reg <= 0; hash_data_valid_reg <= 0; end end endmodule `resetall