/* Copyright (c) 2021-2022 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * Xilinx UltraScale PCIe interface adapter (Requester Completion) */ module pcie_us_if_rc # ( // Width of PCIe AXI stream interfaces in bits parameter AXIS_PCIE_DATA_WIDTH = 256, // PCIe AXI stream tkeep signal width (words per cycle) parameter AXIS_PCIE_KEEP_WIDTH = (AXIS_PCIE_DATA_WIDTH/32), // PCIe AXI stream RC tuser signal width parameter AXIS_PCIE_RC_USER_WIDTH = AXIS_PCIE_DATA_WIDTH < 512 ? 75 : 161, // RC interface TLP straddling parameter RC_STRADDLE = AXIS_PCIE_DATA_WIDTH >= 256, // TLP data width parameter TLP_DATA_WIDTH = AXIS_PCIE_DATA_WIDTH, // TLP strobe width parameter TLP_STRB_WIDTH = TLP_DATA_WIDTH/32, // TLP header width parameter TLP_HDR_WIDTH = 128, // TLP segment count parameter TLP_SEG_COUNT = 1 ) ( input wire clk, input wire rst, /* * AXI input (RC) */ input wire [AXIS_PCIE_DATA_WIDTH-1:0] s_axis_rc_tdata, input wire [AXIS_PCIE_KEEP_WIDTH-1:0] s_axis_rc_tkeep, input wire s_axis_rc_tvalid, output wire s_axis_rc_tready, input wire s_axis_rc_tlast, input wire [AXIS_PCIE_RC_USER_WIDTH-1:0] s_axis_rc_tuser, /* * TLP output (completion to DMA) */ output wire [TLP_DATA_WIDTH-1:0] rx_cpl_tlp_data, output wire [TLP_STRB_WIDTH-1:0] rx_cpl_tlp_strb, output wire [TLP_SEG_COUNT*TLP_HDR_WIDTH-1:0] rx_cpl_tlp_hdr, output wire [TLP_SEG_COUNT*4-1:0] rx_cpl_tlp_error, output wire [TLP_SEG_COUNT-1:0] rx_cpl_tlp_valid, output wire [TLP_SEG_COUNT-1:0] rx_cpl_tlp_sop, output wire [TLP_SEG_COUNT-1:0] rx_cpl_tlp_eop, input wire rx_cpl_tlp_ready ); parameter INT_TLP_SEG_COUNT = (RC_STRADDLE && AXIS_PCIE_DATA_WIDTH >= 256) ? (AXIS_PCIE_DATA_WIDTH == 512 ? 4 : 2) : 1; parameter INT_TLP_SEG_DATA_WIDTH = TLP_DATA_WIDTH / INT_TLP_SEG_COUNT; parameter INT_TLP_SEG_STRB_WIDTH = TLP_STRB_WIDTH / INT_TLP_SEG_COUNT; // bus width assertions initial begin if (AXIS_PCIE_DATA_WIDTH != 64 && AXIS_PCIE_DATA_WIDTH != 128 && AXIS_PCIE_DATA_WIDTH != 256 && AXIS_PCIE_DATA_WIDTH != 512) begin $error("Error: PCIe interface width must be 64, 128, 256, or 512 (instance %m)"); $finish; end if (AXIS_PCIE_KEEP_WIDTH * 32 != AXIS_PCIE_DATA_WIDTH) begin $error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)"); $finish; end if (AXIS_PCIE_DATA_WIDTH == 512) begin if (AXIS_PCIE_RC_USER_WIDTH != 161) begin $error("Error: PCIe RC tuser width must be 161 (instance %m)"); $finish; end end else begin if (AXIS_PCIE_RC_USER_WIDTH != 75) begin $error("Error: PCIe RC tuser width must be 75 (instance %m)"); $finish; end end if (TLP_DATA_WIDTH != AXIS_PCIE_DATA_WIDTH) begin $error("Error: Interface widths must match (instance %m)"); $finish; end if (TLP_HDR_WIDTH != 128) begin $error("Error: TLP segment header width must be 128 (instance %m)"); $finish; end end localparam [2:0] TLP_FMT_3DW = 3'b000, TLP_FMT_4DW = 3'b001, TLP_FMT_3DW_DATA = 3'b010, TLP_FMT_4DW_DATA = 3'b011, TLP_FMT_PREFIX = 3'b100; localparam [2:0] CPL_STATUS_SC = 3'b000, // successful completion CPL_STATUS_UR = 3'b001, // unsupported request CPL_STATUS_CRS = 3'b010, // configuration request retry status CPL_STATUS_CA = 3'b100; // completer abort localparam [3:0] RC_ERROR_NORMAL_TERMINATION = 4'b0000, RC_ERROR_POISONED = 4'b0001, RC_ERROR_BAD_STATUS = 4'b0010, RC_ERROR_INVALID_LENGTH = 4'b0011, RC_ERROR_MISMATCH = 4'b0100, RC_ERROR_INVALID_ADDRESS = 4'b0101, RC_ERROR_INVALID_TAG = 4'b0110, RC_ERROR_TIMEOUT = 4'b1001, RC_ERROR_FLR = 4'b1000; localparam [3:0] PCIE_ERROR_NONE = 4'd0, PCIE_ERROR_POISONED = 4'd1, PCIE_ERROR_BAD_STATUS = 4'd2, PCIE_ERROR_MISMATCH = 4'd3, PCIE_ERROR_INVALID_LEN = 4'd4, PCIE_ERROR_INVALID_ADDR = 4'd5, PCIE_ERROR_INVALID_TAG = 4'd6, PCIE_ERROR_FLR = 4'd8, PCIE_ERROR_TIMEOUT = 4'd15; reg [TLP_DATA_WIDTH-1:0] rx_cpl_tlp_data_reg = 0, rx_cpl_tlp_data_next; reg [TLP_STRB_WIDTH-1:0] rx_cpl_tlp_strb_reg = 0, rx_cpl_tlp_strb_next; reg [INT_TLP_SEG_COUNT*TLP_HDR_WIDTH-1:0] rx_cpl_tlp_hdr_reg = 0, rx_cpl_tlp_hdr_next; reg [INT_TLP_SEG_COUNT*4-1:0] rx_cpl_tlp_error_reg = 0, rx_cpl_tlp_error_next; reg [INT_TLP_SEG_COUNT-1:0] rx_cpl_tlp_valid_reg = 0, rx_cpl_tlp_valid_next; reg [INT_TLP_SEG_COUNT-1:0] rx_cpl_tlp_sop_reg = 0, rx_cpl_tlp_sop_next; reg [INT_TLP_SEG_COUNT-1:0] rx_cpl_tlp_eop_reg = 0, rx_cpl_tlp_eop_next; reg tlp_frame_reg = 0, tlp_frame_next; wire fifo_tlp_ready; reg tlp_input_frame_reg = 1'b0, tlp_input_frame_next; reg [TLP_DATA_WIDTH-1:0] rc_data; reg [TLP_STRB_WIDTH-1:0] rc_strb; reg [INT_TLP_SEG_COUNT-1:0] rc_valid; reg [TLP_STRB_WIDTH-1:0] rc_strb_sop; reg [TLP_STRB_WIDTH-1:0] rc_strb_eop; reg [INT_TLP_SEG_COUNT-1:0] rc_sop; reg [INT_TLP_SEG_COUNT-1:0] rc_eop; reg rc_frame_reg = 1'b0, rc_frame_next; reg [TLP_DATA_WIDTH-1:0] rc_data_int_reg = 0, rc_data_int_next; reg [TLP_STRB_WIDTH-1:0] rc_strb_int_reg = 0, rc_strb_int_next; reg [INT_TLP_SEG_COUNT-1:0] rc_valid_int_reg = 0, rc_valid_int_next; reg [TLP_STRB_WIDTH-1:0] rc_strb_eop_int_reg = 0, rc_strb_eop_int_next; reg [INT_TLP_SEG_COUNT-1:0] rc_sop_int_reg = 0, rc_sop_int_next; reg [INT_TLP_SEG_COUNT-1:0] rc_eop_int_reg = 0, rc_eop_int_next; wire [TLP_DATA_WIDTH*2-1:0] rc_data_full = {rc_data, rc_data_int_reg}; wire [TLP_STRB_WIDTH*2-1:0] rc_strb_full = {rc_strb, rc_strb_int_reg}; wire [INT_TLP_SEG_COUNT*2-1:0] rc_valid_full = {rc_valid, rc_valid_int_reg}; wire [TLP_STRB_WIDTH*2-1:0] rc_strb_eop_full = {rc_strb_eop, rc_strb_eop_int_reg}; wire [INT_TLP_SEG_COUNT*2-1:0] rc_sop_full = {rc_sop, rc_sop_int_reg}; wire [INT_TLP_SEG_COUNT*2-1:0] rc_eop_full = {rc_eop, rc_eop_int_reg}; reg [INT_TLP_SEG_COUNT*128-1:0] tlp_hdr; reg [INT_TLP_SEG_COUNT*4-1:0] tlp_error; assign s_axis_rc_tready = fifo_tlp_ready; pcie_tlp_fifo #( .DEPTH((1024/4)*2), .TLP_DATA_WIDTH(TLP_DATA_WIDTH), .TLP_STRB_WIDTH(TLP_STRB_WIDTH), .TLP_HDR_WIDTH(TLP_HDR_WIDTH), .SEQ_NUM_WIDTH(1), .IN_TLP_SEG_COUNT(INT_TLP_SEG_COUNT), .OUT_TLP_SEG_COUNT(TLP_SEG_COUNT) ) pcie_tlp_fifo_inst ( .clk(clk), .rst(rst), /* * TLP input */ .in_tlp_data(rx_cpl_tlp_data_reg), .in_tlp_strb(rx_cpl_tlp_strb_reg), .in_tlp_hdr(rx_cpl_tlp_hdr_reg), .in_tlp_seq(0), .in_tlp_bar_id(0), .in_tlp_func_num(0), .in_tlp_error(rx_cpl_tlp_error_reg), .in_tlp_valid(rx_cpl_tlp_valid_reg), .in_tlp_sop(rx_cpl_tlp_sop_reg), .in_tlp_eop(rx_cpl_tlp_eop_reg), .in_tlp_ready(fifo_tlp_ready), /* * TLP output */ .out_tlp_data(rx_cpl_tlp_data), .out_tlp_strb(rx_cpl_tlp_strb), .out_tlp_hdr(rx_cpl_tlp_hdr), .out_tlp_seq(), .out_tlp_bar_id(), .out_tlp_func_num(), .out_tlp_error(rx_cpl_tlp_error), .out_tlp_valid(rx_cpl_tlp_valid), .out_tlp_sop(rx_cpl_tlp_sop), .out_tlp_eop(rx_cpl_tlp_eop), .out_tlp_ready(rx_cpl_tlp_ready), /* * Status */ .half_full(), .watermark() ); integer seg, lane; reg valid; always @* begin rx_cpl_tlp_data_next = rx_cpl_tlp_data_reg; rx_cpl_tlp_strb_next = rx_cpl_tlp_strb_reg; rx_cpl_tlp_hdr_next = rx_cpl_tlp_hdr_reg; rx_cpl_tlp_error_next = rx_cpl_tlp_error_reg; rx_cpl_tlp_valid_next = fifo_tlp_ready ? 0 : rx_cpl_tlp_valid_reg; rx_cpl_tlp_sop_next = rx_cpl_tlp_sop_reg; rx_cpl_tlp_eop_next = rx_cpl_tlp_eop_reg; tlp_frame_next = tlp_frame_reg; rc_frame_next = rc_frame_reg; rc_data_int_next = rc_data_int_reg; rc_strb_int_next = rc_strb_int_reg; rc_valid_int_next = rc_valid_int_reg; rc_strb_eop_int_next = rc_strb_eop_int_reg; rc_sop_int_next = rc_sop_int_reg; rc_eop_int_next = rc_eop_int_reg; // decode framing if (RC_STRADDLE && AXIS_PCIE_DATA_WIDTH >= 256) begin rc_data = s_axis_rc_tdata; rc_strb = 0; rc_valid = 0; rc_strb_sop = 0; rc_strb_eop = 0; rc_sop = 0; rc_eop = 0; if (AXIS_PCIE_DATA_WIDTH == 256) begin if (INT_TLP_SEG_COUNT == 1) begin if (s_axis_rc_tuser[32]) begin rc_strb_sop[0] = 1'b1; end end else begin if (s_axis_rc_tuser[32]) begin if (rc_frame_reg) begin rc_strb_sop[4] = 1'b1; end else begin rc_strb_sop[0] = 1'b1; end end if (s_axis_rc_tuser[33]) begin rc_strb_sop[4] = 1'b1; end end for (seg = 0; seg < INT_TLP_SEG_COUNT; seg = seg + 1) begin if (s_axis_rc_tuser[34+seg*4]) begin rc_strb_eop[s_axis_rc_tuser[35+seg*4 +: 3]] = 1'b1; end end end else if (AXIS_PCIE_DATA_WIDTH == 512) begin for (seg = 0; seg < INT_TLP_SEG_COUNT; seg = seg + 1) begin if (s_axis_rc_tuser[64+seg]) begin rc_strb_sop[s_axis_rc_tuser[68+seg*2 +: 2]*4] = 1'b1; end if (s_axis_rc_tuser[76+seg]) begin rc_strb_eop[s_axis_rc_tuser[80+seg*4 +: 4]] = 1'b1; end end end valid = 1; for (lane = 0; lane < TLP_STRB_WIDTH; lane = lane + 1) begin if (rc_strb_sop[lane]) begin valid = 1; rc_sop[lane/INT_TLP_SEG_STRB_WIDTH] = 1'b1; end if (valid) begin rc_strb[lane] = 1'b1; rc_valid[lane/INT_TLP_SEG_STRB_WIDTH] = s_axis_rc_tvalid; end if (rc_strb_eop[lane]) begin valid = 0; rc_eop[lane/INT_TLP_SEG_STRB_WIDTH] = 1'b1; end end if (s_axis_rc_tready && s_axis_rc_tvalid) begin rc_frame_next = valid; end end else begin rc_data = s_axis_rc_tdata; rc_strb = s_axis_rc_tvalid ? s_axis_rc_tkeep : 0; rc_valid = s_axis_rc_tvalid; rc_sop = !rc_frame_reg; rc_eop = s_axis_rc_tlast; rc_strb_sop = rc_sop; rc_strb_eop = 0; for (lane = 0; lane < TLP_STRB_WIDTH; lane = lane + 1) begin if (rc_strb[lane]) begin rc_strb_eop = (rc_eop) << lane; end end if (s_axis_rc_tready && s_axis_rc_tvalid) begin rc_frame_next = !s_axis_rc_tlast; end end for (seg = 0; seg < INT_TLP_SEG_COUNT; seg = seg + 1) begin // parse header // DW 0 if (rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+32 +: 11] != 0) begin tlp_hdr[128*seg+125 +: 3] = TLP_FMT_3DW_DATA; // fmt - 3DW with data end else begin tlp_hdr[128*seg+125 +: 3] = TLP_FMT_3DW; // fmt - 3DW without data end tlp_hdr[128*seg+120 +: 5] = {4'b0101, rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+29]}; // type - completion tlp_hdr[128*seg+119] = 1'b0; // T9 tlp_hdr[128*seg+116 +: 3] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+89 +: 3]; // TC tlp_hdr[128*seg+115] = 1'b0; // T8 tlp_hdr[128*seg+114] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+94]; // attr tlp_hdr[128*seg+113] = 1'b0; // LN tlp_hdr[128*seg+112] = 1'b0; // TH tlp_hdr[128*seg+111] = 1'b0; // TD tlp_hdr[128*seg+110] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+46]; // EP tlp_hdr[128*seg+108 +: 2] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+92 +: 2]; // attr tlp_hdr[128*seg+106 +: 2] = 2'b00; // AT tlp_hdr[128*seg+96 +: 10] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+32 +: 11]; // length // DW 1 tlp_hdr[128*seg+80 +: 16] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+72 +: 16]; // completer ID tlp_hdr[128*seg+77 +: 3] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+43 +: 3]; // completion status tlp_hdr[128*seg+76] = 1'b0; // BCM tlp_hdr[128*seg+64 +: 12] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+16 +: 13]; // byte count // DW 2 tlp_hdr[128*seg+48 +: 16] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+48 +: 16]; // requester ID tlp_hdr[128*seg+40 +: 8] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+64 +: 8]; // tag tlp_hdr[128*seg+39] = 1'b0; tlp_hdr[128*seg+32 +: 7] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+0 +: 7]; // lower address // DW 3 tlp_hdr[128*seg+0 +: 32] = 32'd0; // error code case (rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+12 +: 4]) RC_ERROR_NORMAL_TERMINATION: tlp_error[4*seg +: 4] = PCIE_ERROR_NONE; RC_ERROR_POISONED: tlp_error[4*seg +: 4] = PCIE_ERROR_POISONED; RC_ERROR_BAD_STATUS: tlp_error[4*seg +: 4] = PCIE_ERROR_BAD_STATUS; RC_ERROR_INVALID_LENGTH: tlp_error[4*seg +: 4] = PCIE_ERROR_INVALID_LEN; RC_ERROR_MISMATCH: tlp_error[4*seg +: 4] = PCIE_ERROR_MISMATCH; RC_ERROR_INVALID_ADDRESS: tlp_error[4*seg +: 4] = PCIE_ERROR_INVALID_ADDR; RC_ERROR_INVALID_TAG: tlp_error[4*seg +: 4] = PCIE_ERROR_INVALID_TAG; RC_ERROR_FLR: tlp_error[4*seg +: 4] = PCIE_ERROR_FLR; RC_ERROR_TIMEOUT: tlp_error[4*seg +: 4] = PCIE_ERROR_TIMEOUT; default: tlp_error[4*seg +: 4] = PCIE_ERROR_NONE; endcase end if (fifo_tlp_ready) begin rx_cpl_tlp_strb_next = 0; rx_cpl_tlp_valid_next = 0; rx_cpl_tlp_sop_next = 0; rx_cpl_tlp_eop_next = 0; if (TLP_DATA_WIDTH == 64) begin if (rc_valid_full[0]) begin rx_cpl_tlp_data_next = rc_data_full >> 32; rx_cpl_tlp_strb_next = rc_strb_full >> 1; if (rc_sop_full[0]) begin tlp_frame_next = 1'b0; rx_cpl_tlp_hdr_next = tlp_hdr; rx_cpl_tlp_error_next = tlp_error; if (rc_eop_full[0]) begin rc_valid_int_next[0] = 1'b0; end else if (rc_valid_full[1]) begin rc_valid_int_next[0] = 1'b0; end end else begin rx_cpl_tlp_sop_next = !tlp_frame_reg; rx_cpl_tlp_eop_next = 1'b0; if (rc_eop_full[0]) begin rx_cpl_tlp_strb_next = rc_strb_full[1]; rx_cpl_tlp_valid_next = 1'b1; rc_valid_int_next[0] = 1'b0; rx_cpl_tlp_eop_next = 1'b1; end else if (rc_valid_full[1]) begin rx_cpl_tlp_valid_next = 1'b1; rc_valid_int_next[0] = 1'b0; tlp_frame_next = 1'b1; end end end end else begin for (seg = 0; seg < INT_TLP_SEG_COUNT; seg = seg + 1) begin if (rc_valid_full[seg]) begin rx_cpl_tlp_data_next[INT_TLP_SEG_DATA_WIDTH*seg +: INT_TLP_SEG_DATA_WIDTH] = rc_data_full >> (96 + INT_TLP_SEG_DATA_WIDTH*seg); if (rc_sop_full[seg]) begin rx_cpl_tlp_hdr_next[TLP_HDR_WIDTH*seg +: TLP_HDR_WIDTH] = tlp_hdr[128*seg +: 128]; rx_cpl_tlp_error_next[4*seg +: 4] = tlp_error[4*seg +: 4]; end rx_cpl_tlp_sop_next[seg] = rc_sop_full[seg]; if (rc_eop_full[seg]) begin rx_cpl_tlp_strb_next[INT_TLP_SEG_STRB_WIDTH*seg +: INT_TLP_SEG_STRB_WIDTH] = rc_strb_full[INT_TLP_SEG_STRB_WIDTH*seg +: INT_TLP_SEG_STRB_WIDTH] >> 3; if (rc_sop_full[seg] || rc_strb_eop_full[INT_TLP_SEG_STRB_WIDTH*seg +: INT_TLP_SEG_STRB_WIDTH] >> 3) begin rx_cpl_tlp_eop_next[seg] = 1'b1; rx_cpl_tlp_valid_next[seg] = 1'b1; end rc_valid_int_next[seg] = 1'b0; end else begin rx_cpl_tlp_strb_next[INT_TLP_SEG_STRB_WIDTH*seg +: INT_TLP_SEG_STRB_WIDTH] = rc_strb_full >> (3 + INT_TLP_SEG_STRB_WIDTH*seg); if (rc_valid_full[seg+1]) begin rx_cpl_tlp_eop_next[seg] = (rc_strb_eop_full[INT_TLP_SEG_STRB_WIDTH*(seg+1) +: INT_TLP_SEG_STRB_WIDTH] & 3'h7) != 0; rx_cpl_tlp_valid_next[seg] = 1'b1; rc_valid_int_next[seg] = 1'b0; end end end end end end if (s_axis_rc_tready && s_axis_rc_tvalid) begin rc_data_int_next = rc_data; rc_strb_int_next = rc_strb; rc_valid_int_next = rc_valid; rc_strb_eop_int_next = rc_strb_eop; rc_sop_int_next = rc_sop; rc_eop_int_next = rc_eop; end end always @(posedge clk) begin rx_cpl_tlp_data_reg <= rx_cpl_tlp_data_next; rx_cpl_tlp_strb_reg <= rx_cpl_tlp_strb_next; rx_cpl_tlp_hdr_reg <= rx_cpl_tlp_hdr_next; rx_cpl_tlp_error_reg <= rx_cpl_tlp_error_next; rx_cpl_tlp_valid_reg <= rx_cpl_tlp_valid_next; rx_cpl_tlp_sop_reg <= rx_cpl_tlp_sop_next; rx_cpl_tlp_eop_reg <= rx_cpl_tlp_eop_next; tlp_frame_reg <= tlp_frame_next; rc_frame_reg <= rc_frame_next; rc_data_int_reg <= rc_data_int_next; rc_strb_int_reg <= rc_strb_int_next; rc_valid_int_reg <= rc_valid_int_next; rc_strb_eop_int_reg <= rc_strb_eop_int_next; rc_sop_int_reg <= rc_sop_int_next; rc_eop_int_reg <= rc_eop_int_next; if (rst) begin rx_cpl_tlp_valid_reg <= 0; rc_frame_reg <= 1'b0; rc_valid_int_reg <= 0; end end endmodule `resetall