/* Copyright (c) 2019 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4-Stream FIFO with width converter */ module axis_fifo_adapter # ( // FIFO depth in words // KEEP_WIDTH words per cycle if KEEP_ENABLE set // Rounded up to nearest power of 2 cycles parameter DEPTH = 4096, // Width of input AXI stream interface in bits parameter S_DATA_WIDTH = 8, // Propagate tkeep signal on input interface // If disabled, tkeep assumed to be 1'b1 parameter S_KEEP_ENABLE = (S_DATA_WIDTH>8), // tkeep signal width (words per cycle) on input interface parameter S_KEEP_WIDTH = ((S_DATA_WIDTH+7)/8), // Width of output AXI stream interface in bits parameter M_DATA_WIDTH = 8, // Propagate tkeep signal on output interface // If disabled, tkeep assumed to be 1'b1 parameter M_KEEP_ENABLE = (M_DATA_WIDTH>8), // tkeep signal width (words per cycle) on output interface parameter M_KEEP_WIDTH = ((M_DATA_WIDTH+7)/8), // Propagate tid signal parameter ID_ENABLE = 0, // tid signal width parameter ID_WIDTH = 8, // Propagate tdest signal parameter DEST_ENABLE = 0, // tdest signal width parameter DEST_WIDTH = 8, // Propagate tuser signal parameter USER_ENABLE = 1, // tuser signal width parameter USER_WIDTH = 1, // number of RAM pipeline registers in FIFO parameter RAM_PIPELINE = 1, // use output FIFO // When set, the RAM read enable and pipeline clock enables are removed parameter OUTPUT_FIFO_ENABLE = 0, // Frame FIFO mode - operate on frames instead of cycles // When set, m_axis_tvalid will not be deasserted within a frame // Requires LAST_ENABLE set parameter FRAME_FIFO = 0, // tuser value for bad frame marker parameter USER_BAD_FRAME_VALUE = 1'b1, // tuser mask for bad frame marker parameter USER_BAD_FRAME_MASK = 1'b1, // Drop frames larger than FIFO // Requires FRAME_FIFO set parameter DROP_OVERSIZE_FRAME = FRAME_FIFO, // Drop frames marked bad // Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set parameter DROP_BAD_FRAME = 0, // Drop incoming frames when full // When set, s_axis_tready is always asserted // Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set parameter DROP_WHEN_FULL = 0 ) ( input wire clk, input wire rst, /* * AXI input */ input wire [S_DATA_WIDTH-1:0] s_axis_tdata, input wire [S_KEEP_WIDTH-1:0] s_axis_tkeep, input wire s_axis_tvalid, output wire s_axis_tready, input wire s_axis_tlast, input wire [ID_WIDTH-1:0] s_axis_tid, input wire [DEST_WIDTH-1:0] s_axis_tdest, input wire [USER_WIDTH-1:0] s_axis_tuser, /* * AXI output */ output wire [M_DATA_WIDTH-1:0] m_axis_tdata, output wire [M_KEEP_WIDTH-1:0] m_axis_tkeep, output wire m_axis_tvalid, input wire m_axis_tready, output wire m_axis_tlast, output wire [ID_WIDTH-1:0] m_axis_tid, output wire [DEST_WIDTH-1:0] m_axis_tdest, output wire [USER_WIDTH-1:0] m_axis_tuser, /* * Status */ output wire [$clog2(DEPTH):0] status_depth, output wire [$clog2(DEPTH):0] status_depth_commit, output wire status_overflow, output wire status_bad_frame, output wire status_good_frame ); // force keep width to 1 when disabled parameter S_KEEP_WIDTH_INT = S_KEEP_ENABLE ? S_KEEP_WIDTH : 1; parameter M_KEEP_WIDTH_INT = M_KEEP_ENABLE ? M_KEEP_WIDTH : 1; // bus word sizes (must be identical) parameter S_DATA_WORD_SIZE = S_DATA_WIDTH / S_KEEP_WIDTH_INT; parameter M_DATA_WORD_SIZE = M_DATA_WIDTH / M_KEEP_WIDTH_INT; // output bus is wider parameter EXPAND_BUS = M_KEEP_WIDTH_INT > S_KEEP_WIDTH_INT; // total data and keep widths parameter DATA_WIDTH = EXPAND_BUS ? M_DATA_WIDTH : S_DATA_WIDTH; parameter KEEP_WIDTH = EXPAND_BUS ? M_KEEP_WIDTH_INT : S_KEEP_WIDTH_INT; // bus width assertions initial begin if (S_DATA_WORD_SIZE * S_KEEP_WIDTH_INT != S_DATA_WIDTH) begin $error("Error: input data width not evenly divisble (instance %m)"); $finish; end if (M_DATA_WORD_SIZE * M_KEEP_WIDTH_INT != M_DATA_WIDTH) begin $error("Error: output data width not evenly divisble (instance %m)"); $finish; end if (S_DATA_WORD_SIZE != M_DATA_WORD_SIZE) begin $error("Error: word size mismatch (instance %m)"); $finish; end end wire [DATA_WIDTH-1:0] pre_fifo_axis_tdata; wire [KEEP_WIDTH-1:0] pre_fifo_axis_tkeep; wire pre_fifo_axis_tvalid; wire pre_fifo_axis_tready; wire pre_fifo_axis_tlast; wire [ID_WIDTH-1:0] pre_fifo_axis_tid; wire [DEST_WIDTH-1:0] pre_fifo_axis_tdest; wire [USER_WIDTH-1:0] pre_fifo_axis_tuser; wire [DATA_WIDTH-1:0] post_fifo_axis_tdata; wire [KEEP_WIDTH-1:0] post_fifo_axis_tkeep; wire post_fifo_axis_tvalid; wire post_fifo_axis_tready; wire post_fifo_axis_tlast; wire [ID_WIDTH-1:0] post_fifo_axis_tid; wire [DEST_WIDTH-1:0] post_fifo_axis_tdest; wire [USER_WIDTH-1:0] post_fifo_axis_tuser; generate if (M_KEEP_WIDTH_INT == S_KEEP_WIDTH_INT) begin // same width, no adapter needed assign pre_fifo_axis_tdata = s_axis_tdata; assign pre_fifo_axis_tkeep = s_axis_tkeep; assign pre_fifo_axis_tvalid = s_axis_tvalid; assign s_axis_tready = pre_fifo_axis_tready; assign pre_fifo_axis_tlast = s_axis_tlast; assign pre_fifo_axis_tid = s_axis_tid; assign pre_fifo_axis_tdest = s_axis_tdest; assign pre_fifo_axis_tuser = s_axis_tuser; assign m_axis_tdata = post_fifo_axis_tdata; assign m_axis_tkeep = post_fifo_axis_tkeep; assign m_axis_tvalid = post_fifo_axis_tvalid; assign post_fifo_axis_tready = m_axis_tready; assign m_axis_tlast = post_fifo_axis_tlast; assign m_axis_tid = post_fifo_axis_tid; assign m_axis_tdest = post_fifo_axis_tdest; assign m_axis_tuser = post_fifo_axis_tuser; end else if (EXPAND_BUS) begin // output wider, adapt width before FIFO axis_adapter #( .S_DATA_WIDTH(S_DATA_WIDTH), .S_KEEP_ENABLE(S_KEEP_ENABLE), .S_KEEP_WIDTH(S_KEEP_WIDTH), .M_DATA_WIDTH(M_DATA_WIDTH), .M_KEEP_ENABLE(M_KEEP_ENABLE), .M_KEEP_WIDTH(M_KEEP_WIDTH), .ID_ENABLE(ID_ENABLE), .ID_WIDTH(ID_WIDTH), .DEST_ENABLE(DEST_ENABLE), .DEST_WIDTH(DEST_WIDTH), .USER_ENABLE(USER_ENABLE), .USER_WIDTH(USER_WIDTH) ) adapter_inst ( .clk(clk), .rst(rst), // AXI input .s_axis_tdata(s_axis_tdata), .s_axis_tkeep(s_axis_tkeep), .s_axis_tvalid(s_axis_tvalid), .s_axis_tready(s_axis_tready), .s_axis_tlast(s_axis_tlast), .s_axis_tid(s_axis_tid), .s_axis_tdest(s_axis_tdest), .s_axis_tuser(s_axis_tuser), // AXI output .m_axis_tdata(pre_fifo_axis_tdata), .m_axis_tkeep(pre_fifo_axis_tkeep), .m_axis_tvalid(pre_fifo_axis_tvalid), .m_axis_tready(pre_fifo_axis_tready), .m_axis_tlast(pre_fifo_axis_tlast), .m_axis_tid(pre_fifo_axis_tid), .m_axis_tdest(pre_fifo_axis_tdest), .m_axis_tuser(pre_fifo_axis_tuser) ); assign m_axis_tdata = post_fifo_axis_tdata; assign m_axis_tkeep = post_fifo_axis_tkeep; assign m_axis_tvalid = post_fifo_axis_tvalid; assign post_fifo_axis_tready = m_axis_tready; assign m_axis_tlast = post_fifo_axis_tlast; assign m_axis_tid = post_fifo_axis_tid; assign m_axis_tdest = post_fifo_axis_tdest; assign m_axis_tuser = post_fifo_axis_tuser; end else begin // input wider, adapt width after FIFO assign pre_fifo_axis_tdata = s_axis_tdata; assign pre_fifo_axis_tkeep = s_axis_tkeep; assign pre_fifo_axis_tvalid = s_axis_tvalid; assign s_axis_tready = pre_fifo_axis_tready; assign pre_fifo_axis_tlast = s_axis_tlast; assign pre_fifo_axis_tid = s_axis_tid; assign pre_fifo_axis_tdest = s_axis_tdest; assign pre_fifo_axis_tuser = s_axis_tuser; axis_adapter #( .S_DATA_WIDTH(S_DATA_WIDTH), .S_KEEP_ENABLE(S_KEEP_ENABLE), .S_KEEP_WIDTH(S_KEEP_WIDTH), .M_DATA_WIDTH(M_DATA_WIDTH), .M_KEEP_ENABLE(M_KEEP_ENABLE), .M_KEEP_WIDTH(M_KEEP_WIDTH), .ID_ENABLE(ID_ENABLE), .ID_WIDTH(ID_WIDTH), .DEST_ENABLE(DEST_ENABLE), .DEST_WIDTH(DEST_WIDTH), .USER_ENABLE(USER_ENABLE), .USER_WIDTH(USER_WIDTH) ) adapter_inst ( .clk(clk), .rst(rst), // AXI input .s_axis_tdata(post_fifo_axis_tdata), .s_axis_tkeep(post_fifo_axis_tkeep), .s_axis_tvalid(post_fifo_axis_tvalid), .s_axis_tready(post_fifo_axis_tready), .s_axis_tlast(post_fifo_axis_tlast), .s_axis_tid(post_fifo_axis_tid), .s_axis_tdest(post_fifo_axis_tdest), .s_axis_tuser(post_fifo_axis_tuser), // AXI output .m_axis_tdata(m_axis_tdata), .m_axis_tkeep(m_axis_tkeep), .m_axis_tvalid(m_axis_tvalid), .m_axis_tready(m_axis_tready), .m_axis_tlast(m_axis_tlast), .m_axis_tid(m_axis_tid), .m_axis_tdest(m_axis_tdest), .m_axis_tuser(m_axis_tuser) ); end endgenerate axis_fifo #( .DEPTH(DEPTH), .DATA_WIDTH(DATA_WIDTH), .KEEP_ENABLE(EXPAND_BUS ? M_KEEP_ENABLE : S_KEEP_ENABLE), .KEEP_WIDTH(KEEP_WIDTH), .LAST_ENABLE(1), .ID_ENABLE(ID_ENABLE), .ID_WIDTH(ID_WIDTH), .DEST_ENABLE(DEST_ENABLE), .DEST_WIDTH(DEST_WIDTH), .USER_ENABLE(USER_ENABLE), .USER_WIDTH(USER_WIDTH), .RAM_PIPELINE(RAM_PIPELINE), .OUTPUT_FIFO_ENABLE(OUTPUT_FIFO_ENABLE), .FRAME_FIFO(FRAME_FIFO), .USER_BAD_FRAME_VALUE(USER_BAD_FRAME_VALUE), .USER_BAD_FRAME_MASK(USER_BAD_FRAME_MASK), .DROP_OVERSIZE_FRAME(DROP_OVERSIZE_FRAME), .DROP_BAD_FRAME(DROP_BAD_FRAME), .DROP_WHEN_FULL(DROP_WHEN_FULL) ) fifo_inst ( .clk(clk), .rst(rst), // AXI input .s_axis_tdata(pre_fifo_axis_tdata), .s_axis_tkeep(pre_fifo_axis_tkeep), .s_axis_tvalid(pre_fifo_axis_tvalid), .s_axis_tready(pre_fifo_axis_tready), .s_axis_tlast(pre_fifo_axis_tlast), .s_axis_tid(pre_fifo_axis_tid), .s_axis_tdest(pre_fifo_axis_tdest), .s_axis_tuser(pre_fifo_axis_tuser), // AXI output .m_axis_tdata(post_fifo_axis_tdata), .m_axis_tkeep(post_fifo_axis_tkeep), .m_axis_tvalid(post_fifo_axis_tvalid), .m_axis_tready(post_fifo_axis_tready), .m_axis_tlast(post_fifo_axis_tlast), .m_axis_tid(post_fifo_axis_tid), .m_axis_tdest(post_fifo_axis_tdest), .m_axis_tuser(post_fifo_axis_tuser), // Status .status_depth(status_depth), .status_depth_commit(status_depth_commit), .status_overflow(status_overflow), .status_bad_frame(status_bad_frame), .status_good_frame(status_good_frame) ); endmodule `resetall