/* Copyright (c) 2015-2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4-Stream frame length adjuster */ module axis_frame_length_adjust # ( parameter DATA_WIDTH = 8, parameter KEEP_ENABLE = (DATA_WIDTH>8), parameter KEEP_WIDTH = (DATA_WIDTH/8), parameter ID_ENABLE = 0, parameter ID_WIDTH = 8, parameter DEST_ENABLE = 0, parameter DEST_WIDTH = 8, parameter USER_ENABLE = 1, parameter USER_WIDTH = 1 ) ( input wire clk, input wire rst, /* * AXI input */ input wire [DATA_WIDTH-1:0] input_axis_tdata, input wire [KEEP_WIDTH-1:0] input_axis_tkeep, input wire input_axis_tvalid, output wire input_axis_tready, input wire input_axis_tlast, input wire [ID_WIDTH-1:0] input_axis_tid, input wire [DEST_WIDTH-1:0] input_axis_tdest, input wire [USER_WIDTH-1:0] input_axis_tuser, /* * AXI output */ output wire [DATA_WIDTH-1:0] output_axis_tdata, output wire [KEEP_WIDTH-1:0] output_axis_tkeep, output wire output_axis_tvalid, input wire output_axis_tready, output wire output_axis_tlast, output wire [ID_WIDTH-1:0] output_axis_tid, output wire [DEST_WIDTH-1:0] output_axis_tdest, output wire [USER_WIDTH-1:0] output_axis_tuser, /* * Status */ output wire status_valid, input wire status_ready, output wire status_frame_pad, output wire status_frame_truncate, output wire [15:0] status_frame_length, output wire [15:0] status_frame_original_length, /* * Configuration */ input wire [15:0] length_min, input wire [15:0] length_max ); // bus word width localparam DATA_WORD_WIDTH = DATA_WIDTH / KEEP_WIDTH; // bus width assertions initial begin if (DATA_WORD_WIDTH * KEEP_WIDTH != DATA_WIDTH) begin $error("Error: data width not evenly divisble"); $finish; end end // state register localparam [2:0] STATE_IDLE = 3'd0, STATE_TRANSFER = 3'd1, STATE_PAD = 3'd2, STATE_TRUNCATE = 3'd3; reg [2:0] state_reg = STATE_IDLE, state_next; // datapath control signals reg store_last_word; reg [15:0] frame_ptr_reg = 16'd0, frame_ptr_next; // frame length counters reg [15:0] short_counter_reg = 16'd0, short_counter_next = 16'd0; reg [15:0] long_counter_reg = 16'd0, long_counter_next = 16'd0; reg [DATA_WIDTH-1:0] last_word_data_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] last_word_keep_reg = {KEEP_WIDTH{1'b0}}; reg [ID_WIDTH-1:0] last_word_id_reg = {ID_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] last_word_dest_reg = {DEST_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] last_word_user_reg = {USER_WIDTH{1'b0}}; reg status_valid_reg = 1'b0, status_valid_next; reg status_frame_pad_reg = 1'b0, status_frame_pad_next; reg status_frame_truncate_reg = 1'b0, status_frame_truncate_next; reg [15:0] status_frame_length_reg = 16'd0, status_frame_length_next; reg [15:0] status_frame_original_length_reg = 16'd0, status_frame_original_length_next; // internal datapath reg [DATA_WIDTH-1:0] output_axis_tdata_int; reg [KEEP_WIDTH-1:0] output_axis_tkeep_int; reg output_axis_tvalid_int; reg output_axis_tready_int_reg = 1'b0; reg output_axis_tlast_int; reg [ID_WIDTH-1:0] output_axis_tid_int; reg [DEST_WIDTH-1:0] output_axis_tdest_int; reg [USER_WIDTH-1:0] output_axis_tuser_int; wire output_axis_tready_int_early; reg input_axis_tready_reg = 1'b0, input_axis_tready_next; assign input_axis_tready = input_axis_tready_reg; assign status_valid = status_valid_reg; assign status_frame_pad = status_frame_pad_reg; assign status_frame_truncate = status_frame_truncate_reg; assign status_frame_length = status_frame_length_reg; assign status_frame_original_length = status_frame_original_length_reg; integer i, word_cnt; always @* begin state_next = STATE_IDLE; store_last_word = 1'b0; frame_ptr_next = frame_ptr_reg; short_counter_next = short_counter_reg; long_counter_next = long_counter_reg; output_axis_tdata_int = {DATA_WIDTH{1'b0}}; output_axis_tkeep_int = {KEEP_WIDTH{1'b0}}; output_axis_tvalid_int = 1'b0; output_axis_tlast_int = 1'b0; output_axis_tid_int = {ID_WIDTH{1'b0}}; output_axis_tdest_int = {DEST_WIDTH{1'b0}}; output_axis_tuser_int = {USER_WIDTH{1'b0}}; input_axis_tready_next = 1'b0; status_valid_next = status_valid_reg & ~status_ready; status_frame_pad_next = status_frame_pad_reg; status_frame_truncate_next = status_frame_truncate_reg; status_frame_length_next = status_frame_length_reg; status_frame_original_length_next = status_frame_original_length_reg; case (state_reg) STATE_IDLE: begin // idle state // accept data next cycle if output register ready next cycle input_axis_tready_next = output_axis_tready_int_early & (~status_valid_reg | status_ready); output_axis_tdata_int = input_axis_tdata; output_axis_tkeep_int = input_axis_tkeep; output_axis_tvalid_int = input_axis_tvalid; output_axis_tlast_int = input_axis_tlast; output_axis_tid_int = input_axis_tid; output_axis_tdest_int = input_axis_tdest; output_axis_tuser_int = input_axis_tuser; short_counter_next = length_min; long_counter_next = length_max; if (input_axis_tready & input_axis_tvalid) begin // transfer through word_cnt = 0; for (i = 0; i <= KEEP_WIDTH; i = i + 1) begin //bit_cnt = bit_cnt + monitor_axis_tkeep[i]; if (input_axis_tkeep == ({KEEP_WIDTH{1'b1}}) >> (KEEP_WIDTH-i)) word_cnt = i; end frame_ptr_next = frame_ptr_reg+KEEP_WIDTH; if (short_counter_reg > KEEP_WIDTH) begin short_counter_next = short_counter_reg - KEEP_WIDTH; end else begin short_counter_next = 16'd0; end if (long_counter_reg > KEEP_WIDTH) begin long_counter_next = long_counter_reg - KEEP_WIDTH; end else begin long_counter_next = 16'd0; end if (long_counter_reg <= word_cnt) begin output_axis_tkeep_int = ({KEEP_WIDTH{1'b1}}) >> (KEEP_WIDTH-long_counter_reg); if (input_axis_tlast) begin status_valid_next = 1'b1; status_frame_pad_next = 1'b0; status_frame_truncate_next = word_cnt > long_counter_reg; status_frame_length_next = length_max; status_frame_original_length_next = frame_ptr_reg+word_cnt; input_axis_tready_next = output_axis_tready_int_early & status_ready; frame_ptr_next = 16'd0; short_counter_next = length_min; long_counter_next = length_max; state_next = STATE_IDLE; end else begin output_axis_tvalid_int = 1'b0; store_last_word = 1'b1; state_next = STATE_TRUNCATE; end end else begin if (input_axis_tlast) begin status_frame_original_length_next = frame_ptr_reg+word_cnt; if (short_counter_reg > word_cnt) begin if (short_counter_reg > KEEP_WIDTH) begin frame_ptr_next = frame_ptr_reg + KEEP_WIDTH; input_axis_tready_next = 1'b0; output_axis_tkeep_int = {KEEP_WIDTH{1'b1}}; output_axis_tlast_int = 1'b0; store_last_word = 1'b1; state_next = STATE_PAD; end else begin status_valid_next = 1'b1; status_frame_pad_next = 1'b1; status_frame_truncate_next = 1'b0; status_frame_length_next = length_min; input_axis_tready_next = output_axis_tready_int_early & status_ready; output_axis_tkeep_int = ({KEEP_WIDTH{1'b1}}) >> (KEEP_WIDTH-(length_min - frame_ptr_reg)); frame_ptr_next = 16'd0; short_counter_next = length_min; long_counter_next = length_max; state_next = STATE_IDLE; end end else begin status_valid_next = 1'b1; status_frame_pad_next = 1'b0; status_frame_truncate_next = 1'b0; status_frame_length_next = frame_ptr_reg+word_cnt; status_frame_original_length_next = frame_ptr_reg+word_cnt; input_axis_tready_next = output_axis_tready_int_early & status_ready; frame_ptr_next = 16'd0; short_counter_next = length_min; long_counter_next = length_max; state_next = STATE_IDLE; end end else begin state_next = STATE_TRANSFER; end end end else begin state_next = STATE_IDLE; end end STATE_TRANSFER: begin // transfer data // accept data next cycle if output register ready next cycle input_axis_tready_next = output_axis_tready_int_early; output_axis_tdata_int = input_axis_tdata; output_axis_tkeep_int = input_axis_tkeep; output_axis_tvalid_int = input_axis_tvalid; output_axis_tlast_int = input_axis_tlast; output_axis_tid_int = input_axis_tid; output_axis_tdest_int = input_axis_tdest; output_axis_tuser_int = input_axis_tuser; if (input_axis_tready & input_axis_tvalid) begin // transfer through word_cnt = 1; for (i = 1; i <= KEEP_WIDTH; i = i + 1) begin //bit_cnt = bit_cnt + monitor_axis_tkeep[i]; if (input_axis_tkeep == ({KEEP_WIDTH{1'b1}}) >> (KEEP_WIDTH-i)) word_cnt = i; end frame_ptr_next = frame_ptr_reg+KEEP_WIDTH; if (short_counter_reg > KEEP_WIDTH) begin short_counter_next = short_counter_reg - KEEP_WIDTH; end else begin short_counter_next = 16'd0; end if (long_counter_reg > KEEP_WIDTH) begin long_counter_next = long_counter_reg - KEEP_WIDTH; end else begin long_counter_next = 16'd0; end if (long_counter_reg <= word_cnt) begin output_axis_tkeep_int = ({KEEP_WIDTH{1'b1}}) >> (KEEP_WIDTH-long_counter_reg); if (input_axis_tlast) begin status_valid_next = 1'b1; status_frame_pad_next = 1'b0; status_frame_truncate_next = word_cnt > long_counter_reg; status_frame_length_next = length_max; status_frame_original_length_next = frame_ptr_reg+word_cnt; input_axis_tready_next = output_axis_tready_int_early & status_ready; frame_ptr_next = 16'd0; short_counter_next = length_min; long_counter_next = length_max; state_next = STATE_IDLE; end else begin output_axis_tvalid_int = 1'b0; store_last_word = 1'b1; state_next = STATE_TRUNCATE; end end else begin if (input_axis_tlast) begin status_frame_original_length_next = frame_ptr_reg+word_cnt; if (short_counter_reg > word_cnt) begin if (short_counter_reg > KEEP_WIDTH) begin frame_ptr_next = frame_ptr_reg + KEEP_WIDTH; input_axis_tready_next = 1'b0; output_axis_tkeep_int = {KEEP_WIDTH{1'b1}}; output_axis_tlast_int = 1'b0; store_last_word = 1'b1; state_next = STATE_PAD; end else begin status_valid_next = 1'b1; status_frame_pad_next = 1'b1; status_frame_truncate_next = 1'b0; status_frame_length_next = length_min; input_axis_tready_next = output_axis_tready_int_early & status_ready; output_axis_tkeep_int = ({KEEP_WIDTH{1'b1}}) >> (KEEP_WIDTH-short_counter_reg); frame_ptr_next = 16'd0; short_counter_next = length_min; long_counter_next = length_max; state_next = STATE_IDLE; end end else begin status_valid_next = 1'b1; status_frame_pad_next = 1'b0; status_frame_truncate_next = 1'b0; status_frame_length_next = frame_ptr_reg+word_cnt; status_frame_original_length_next = frame_ptr_reg+word_cnt; input_axis_tready_next = output_axis_tready_int_early & status_ready; frame_ptr_next = 16'd0; short_counter_next = length_min; long_counter_next = length_max; state_next = STATE_IDLE; end end else begin state_next = STATE_TRANSFER; end end end else begin state_next = STATE_TRANSFER; end end STATE_PAD: begin // pad to minimum length input_axis_tready_next = 1'b0; output_axis_tdata_int = {DATA_WIDTH{1'b0}}; output_axis_tkeep_int = {KEEP_WIDTH{1'b1}}; output_axis_tvalid_int = 1'b1; output_axis_tlast_int = 1'b0; output_axis_tid_int = last_word_id_reg; output_axis_tdest_int = last_word_dest_reg; output_axis_tuser_int = last_word_user_reg; if (output_axis_tready_int_reg) begin frame_ptr_next = frame_ptr_reg + KEEP_WIDTH; if (short_counter_reg > KEEP_WIDTH) begin short_counter_next = short_counter_reg - KEEP_WIDTH; end else begin short_counter_next = 16'd0; end if (long_counter_reg > KEEP_WIDTH) begin long_counter_next = long_counter_reg - KEEP_WIDTH; end else begin long_counter_next = 16'd0; end if (short_counter_reg <= KEEP_WIDTH) begin status_valid_next = 1'b1; status_frame_pad_next = 1'b1; status_frame_truncate_next = 1'b0; status_frame_length_next = length_min; input_axis_tready_next = output_axis_tready_int_early & status_ready; output_axis_tkeep_int = ({KEEP_WIDTH{1'b1}}) >> (KEEP_WIDTH-short_counter_reg); output_axis_tlast_int = 1'b1; frame_ptr_next = 16'd0; short_counter_next = length_min; long_counter_next = length_max; state_next = STATE_IDLE; end else begin state_next = STATE_PAD; end end else begin state_next = STATE_PAD; end end STATE_TRUNCATE: begin // drop after maximum length input_axis_tready_next = output_axis_tready_int_early; output_axis_tdata_int = last_word_data_reg; output_axis_tkeep_int = last_word_keep_reg; output_axis_tvalid_int = input_axis_tvalid & input_axis_tlast; output_axis_tlast_int = input_axis_tlast; output_axis_tid_int = last_word_id_reg; output_axis_tdest_int = last_word_dest_reg; output_axis_tuser_int = input_axis_tuser; if (input_axis_tready & input_axis_tvalid) begin word_cnt = 0; for (i = 0; i <= KEEP_WIDTH; i = i + 1) begin //bit_cnt = bit_cnt + monitor_axis_tkeep[i]; if (input_axis_tkeep == ({KEEP_WIDTH{1'b1}}) >> (KEEP_WIDTH-i)) word_cnt = i; end frame_ptr_next = frame_ptr_reg+KEEP_WIDTH; if (input_axis_tlast) begin status_valid_next = 1'b1; status_frame_pad_next = 1'b0; status_frame_truncate_next = 1'b1; status_frame_length_next = length_max; status_frame_original_length_next = frame_ptr_reg+word_cnt; input_axis_tready_next = output_axis_tready_int_early & status_ready; frame_ptr_next = 16'd0; short_counter_next = length_min; long_counter_next = length_max; state_next = STATE_IDLE; end else begin state_next = STATE_TRUNCATE; end end else begin state_next = STATE_TRUNCATE; end end endcase end always @(posedge clk) begin if (rst) begin state_reg <= STATE_IDLE; frame_ptr_reg <= 16'd0; short_counter_reg <= 16'd0; long_counter_reg <= 16'd0; input_axis_tready_reg <= 1'b0; status_valid_reg <= 1'b0; end else begin state_reg <= state_next; frame_ptr_reg <= frame_ptr_next; short_counter_reg <= short_counter_next; long_counter_reg <= long_counter_next; input_axis_tready_reg <= input_axis_tready_next; status_valid_reg <= status_valid_next; end status_frame_pad_reg <= status_frame_pad_next; status_frame_truncate_reg <= status_frame_truncate_next; status_frame_length_reg <= status_frame_length_next; status_frame_original_length_reg <= status_frame_original_length_next; if (store_last_word) begin last_word_data_reg <= output_axis_tdata_int; last_word_keep_reg <= output_axis_tkeep_int; last_word_id_reg <= output_axis_tid_int; last_word_dest_reg <= output_axis_tdest_int; last_word_user_reg <= output_axis_tuser_int; end end // output datapath logic reg [DATA_WIDTH-1:0] output_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] output_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next; reg output_axis_tlast_reg = 1'b0; reg [ID_WIDTH-1:0] output_axis_tid_reg = {ID_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] output_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] output_axis_tuser_reg = {USER_WIDTH{1'b0}}; reg [DATA_WIDTH-1:0] temp_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] temp_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg temp_axis_tvalid_reg = 1'b0, temp_axis_tvalid_next; reg temp_axis_tlast_reg = 1'b0; reg [ID_WIDTH-1:0] temp_axis_tid_reg = {ID_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] temp_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] temp_axis_tuser_reg = {USER_WIDTH{1'b0}}; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_axis_temp_to_output; assign output_axis_tdata = output_axis_tdata_reg; assign output_axis_tkeep = KEEP_ENABLE ? output_axis_tkeep_reg : {KEEP_WIDTH{1'b1}}; assign output_axis_tvalid = output_axis_tvalid_reg; assign output_axis_tlast = output_axis_tlast_reg; assign output_axis_tid = ID_ENABLE ? output_axis_tid_reg : {ID_WIDTH{1'b0}}; assign output_axis_tdest = DEST_ENABLE ? output_axis_tdest_reg : {DEST_WIDTH{1'b0}}; assign output_axis_tuser = USER_ENABLE ? output_axis_tuser_reg : {USER_WIDTH{1'b0}}; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign output_axis_tready_int_early = output_axis_tready | (~temp_axis_tvalid_reg & (~output_axis_tvalid_reg | ~output_axis_tvalid_int)); always @* begin // transfer sink ready state to source output_axis_tvalid_next = output_axis_tvalid_reg; temp_axis_tvalid_next = temp_axis_tvalid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_temp_to_output = 1'b0; if (output_axis_tready_int_reg) begin // input is ready if (output_axis_tready | ~output_axis_tvalid_reg) begin // output is ready or currently not valid, transfer data to output output_axis_tvalid_next = output_axis_tvalid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_axis_tvalid_next = output_axis_tvalid_int; store_axis_int_to_temp = 1'b1; end end else if (output_axis_tready) begin // input is not ready, but output is ready output_axis_tvalid_next = temp_axis_tvalid_reg; temp_axis_tvalid_next = 1'b0; store_axis_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin output_axis_tvalid_reg <= 1'b0; output_axis_tready_int_reg <= 1'b0; temp_axis_tvalid_reg <= 1'b0; end else begin output_axis_tvalid_reg <= output_axis_tvalid_next; output_axis_tready_int_reg <= output_axis_tready_int_early; temp_axis_tvalid_reg <= temp_axis_tvalid_next; end // datapath if (store_axis_int_to_output) begin output_axis_tdata_reg <= output_axis_tdata_int; output_axis_tkeep_reg <= output_axis_tkeep_int; output_axis_tlast_reg <= output_axis_tlast_int; output_axis_tid_reg <= output_axis_tid_int; output_axis_tdest_reg <= output_axis_tdest_int; output_axis_tuser_reg <= output_axis_tuser_int; end else if (store_axis_temp_to_output) begin output_axis_tdata_reg <= temp_axis_tdata_reg; output_axis_tkeep_reg <= temp_axis_tkeep_reg; output_axis_tlast_reg <= temp_axis_tlast_reg; output_axis_tid_reg <= temp_axis_tid_reg; output_axis_tdest_reg <= temp_axis_tdest_reg; output_axis_tuser_reg <= temp_axis_tuser_reg; end if (store_axis_int_to_temp) begin temp_axis_tdata_reg <= output_axis_tdata_int; temp_axis_tkeep_reg <= output_axis_tkeep_int; temp_axis_tlast_reg <= output_axis_tlast_int; temp_axis_tid_reg <= output_axis_tid_int; temp_axis_tdest_reg <= output_axis_tdest_int; temp_axis_tuser_reg <= output_axis_tuser_int; end end endmodule