/* Copyright (c) 2016-2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4-Stream switch */ module axis_switch # ( // Number of AXI stream inputs parameter S_COUNT = 4, // Number of AXI stream outputs parameter M_COUNT = 4, // Width of AXI stream interfaces in bits parameter DATA_WIDTH = 8, // Propagate tkeep signal parameter KEEP_ENABLE = (DATA_WIDTH>8), // tkeep signal width (words per cycle) parameter KEEP_WIDTH = ((DATA_WIDTH+7)/8), // Propagate tid signal parameter ID_ENABLE = 0, // input tid signal width parameter S_ID_WIDTH = 8, // output tid signal width parameter M_ID_WIDTH = S_ID_WIDTH+$clog2(S_COUNT), // output tdest signal width parameter M_DEST_WIDTH = 1, // input tdest signal width // must be wide enough to uniquely address outputs parameter S_DEST_WIDTH = M_DEST_WIDTH+$clog2(M_COUNT), // Propagate tuser signal parameter USER_ENABLE = 1, // tuser signal width parameter USER_WIDTH = 1, // Output interface routing base tdest selection // Concatenate M_COUNT S_DEST_WIDTH sized constants // Port selected if M_BASE <= tdest <= M_TOP // set to zero for default routing with tdest MSBs as port index parameter M_BASE = 0, // Output interface routing top tdest selection // Concatenate M_COUNT S_DEST_WIDTH sized constants // Port selected if M_BASE <= tdest <= M_TOP // set to zero to inherit from M_BASE parameter M_TOP = 0, // Interface connection control // M_COUNT concatenated fields of S_COUNT bits parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}}, // Update tid with routing information parameter UPDATE_TID = 0, // Input interface register type // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter S_REG_TYPE = 0, // Output interface register type // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter M_REG_TYPE = 2, // select round robin arbitration parameter ARB_TYPE_ROUND_ROBIN = 1, // LSB priority selection parameter ARB_LSB_HIGH_PRIORITY = 1 ) ( input wire clk, input wire rst, /* * AXI Stream inputs */ input wire [S_COUNT*DATA_WIDTH-1:0] s_axis_tdata, input wire [S_COUNT*KEEP_WIDTH-1:0] s_axis_tkeep, input wire [S_COUNT-1:0] s_axis_tvalid, output wire [S_COUNT-1:0] s_axis_tready, input wire [S_COUNT-1:0] s_axis_tlast, input wire [S_COUNT*S_ID_WIDTH-1:0] s_axis_tid, input wire [S_COUNT*S_DEST_WIDTH-1:0] s_axis_tdest, input wire [S_COUNT*USER_WIDTH-1:0] s_axis_tuser, /* * AXI Stream outputs */ output wire [M_COUNT*DATA_WIDTH-1:0] m_axis_tdata, output wire [M_COUNT*KEEP_WIDTH-1:0] m_axis_tkeep, output wire [M_COUNT-1:0] m_axis_tvalid, input wire [M_COUNT-1:0] m_axis_tready, output wire [M_COUNT-1:0] m_axis_tlast, output wire [M_COUNT*M_ID_WIDTH-1:0] m_axis_tid, output wire [M_COUNT*M_DEST_WIDTH-1:0] m_axis_tdest, output wire [M_COUNT*USER_WIDTH-1:0] m_axis_tuser ); parameter CL_S_COUNT = $clog2(S_COUNT); parameter CL_M_COUNT = $clog2(M_COUNT); parameter S_ID_WIDTH_INT = S_ID_WIDTH > 0 ? S_ID_WIDTH : 1; parameter M_DEST_WIDTH_INT = M_DEST_WIDTH > 0 ? M_DEST_WIDTH : 1; integer i, j; // check configuration initial begin if (S_DEST_WIDTH < CL_M_COUNT) begin $error("Error: S_DEST_WIDTH too small for port count (instance %m)"); $finish; end if (UPDATE_TID) begin if (!ID_ENABLE) begin $error("Error: UPDATE_TID set requires ID_ENABLE set (instance %m)"); $finish; end if (M_ID_WIDTH < CL_S_COUNT) begin $error("Error: M_ID_WIDTH too small for port count (instance %m)"); $finish; end end if (M_BASE == 0) begin // M_BASE is zero, route with tdest as port index $display("Addressing configuration for axis_switch instance %m"); for (i = 0; i < M_COUNT; i = i + 1) begin $display("%d: %08x-%08x (connect mask %b)", i, i << (S_DEST_WIDTH-CL_M_COUNT), ((i+1) << (S_DEST_WIDTH-CL_M_COUNT))-1, M_CONNECT[i*S_COUNT +: S_COUNT]); end end else if (M_TOP == 0) begin // M_TOP is zero, assume equal to M_BASE $display("Addressing configuration for axis_switch instance %m"); for (i = 0; i < M_COUNT; i = i + 1) begin $display("%d: %08x (connect mask %b)", i, M_BASE[i*S_DEST_WIDTH +: S_DEST_WIDTH], M_CONNECT[i*S_COUNT +: S_COUNT]); end for (i = 0; i < M_COUNT; i = i + 1) begin for (j = i+1; j < M_COUNT; j = j + 1) begin if (M_BASE[i*S_DEST_WIDTH +: S_DEST_WIDTH] == M_BASE[j*S_DEST_WIDTH +: S_DEST_WIDTH]) begin $display("%d: %08x", i, M_BASE[i*S_DEST_WIDTH +: S_DEST_WIDTH]); $display("%d: %08x", j, M_BASE[j*S_DEST_WIDTH +: S_DEST_WIDTH]); $error("Error: ranges overlap (instance %m)"); $finish; end end end end else begin $display("Addressing configuration for axis_switch instance %m"); for (i = 0; i < M_COUNT; i = i + 1) begin $display("%d: %08x-%08x (connect mask %b)", i, M_BASE[i*S_DEST_WIDTH +: S_DEST_WIDTH], M_TOP[i*S_DEST_WIDTH +: S_DEST_WIDTH], M_CONNECT[i*S_COUNT +: S_COUNT]); end for (i = 0; i < M_COUNT; i = i + 1) begin if (M_BASE[i*S_DEST_WIDTH +: S_DEST_WIDTH] > M_TOP[i*S_DEST_WIDTH +: S_DEST_WIDTH]) begin $error("Error: invalid range (instance %m)"); $finish; end end for (i = 0; i < M_COUNT; i = i + 1) begin for (j = i+1; j < M_COUNT; j = j + 1) begin if (M_BASE[i*S_DEST_WIDTH +: S_DEST_WIDTH] <= M_TOP[j*S_DEST_WIDTH +: S_DEST_WIDTH] && M_BASE[j*S_DEST_WIDTH +: S_DEST_WIDTH] <= M_TOP[i*S_DEST_WIDTH +: S_DEST_WIDTH]) begin $display("%d: %08x-%08x", i, M_BASE[i*S_DEST_WIDTH +: S_DEST_WIDTH], M_TOP[i*S_DEST_WIDTH +: S_DEST_WIDTH]); $display("%d: %08x-%08x", j, M_BASE[j*S_DEST_WIDTH +: S_DEST_WIDTH], M_TOP[j*S_DEST_WIDTH +: S_DEST_WIDTH]); $error("Error: ranges overlap (instance %m)"); $finish; end end end end end wire [S_COUNT*DATA_WIDTH-1:0] int_s_axis_tdata; wire [S_COUNT*KEEP_WIDTH-1:0] int_s_axis_tkeep; wire [S_COUNT-1:0] int_s_axis_tvalid; wire [S_COUNT-1:0] int_s_axis_tready; wire [S_COUNT-1:0] int_s_axis_tlast; wire [S_COUNT*S_ID_WIDTH-1:0] int_s_axis_tid; wire [S_COUNT*S_DEST_WIDTH-1:0] int_s_axis_tdest; wire [S_COUNT*USER_WIDTH-1:0] int_s_axis_tuser; wire [S_COUNT*M_COUNT-1:0] int_axis_tvalid; wire [M_COUNT*S_COUNT-1:0] int_axis_tready; generate genvar m, n; for (m = 0; m < S_COUNT; m = m + 1) begin : s_ifaces // decoding reg [CL_M_COUNT-1:0] select_reg = 0, select_next; reg drop_reg = 1'b0, drop_next; reg select_valid_reg = 1'b0, select_valid_next; integer k; always @* begin select_next = select_reg; drop_next = drop_reg && !(int_s_axis_tvalid[m] && int_s_axis_tready[m] && int_s_axis_tlast[m]); select_valid_next = select_valid_reg && !(int_s_axis_tvalid[m] && int_s_axis_tready[m] && int_s_axis_tlast[m]); if (int_s_axis_tvalid[m] && !select_valid_reg && !drop_reg) begin select_next = 0; select_valid_next = 1'b0; drop_next = 1'b1; for (k = 0; k < M_COUNT; k = k + 1) begin if (M_BASE == 0) begin if (M_COUNT == 1) begin // M_BASE is zero with only one output port, ignore tdest select_next = 0; select_valid_next = 1'b1; drop_next = 1'b0; end else begin // M_BASE is zero, route with $clog2(M_COUNT) MSBs of tdest as port index if (int_s_axis_tdest[m*S_DEST_WIDTH+(S_DEST_WIDTH-CL_M_COUNT) +: CL_M_COUNT] == k && (M_CONNECT & (1 << (m+k*S_COUNT)))) begin select_next = k; select_valid_next = 1'b1; drop_next = 1'b0; end end end else if (M_TOP == 0) begin // M_TOP is zero, assume equal to M_BASE if (int_s_axis_tdest[m*S_DEST_WIDTH +: S_DEST_WIDTH] == M_BASE[k*S_DEST_WIDTH +: S_DEST_WIDTH] && (M_CONNECT & (1 << (m+k*S_COUNT)))) begin select_next = k; select_valid_next = 1'b1; drop_next = 1'b0; end end else begin if (int_s_axis_tdest[m*S_DEST_WIDTH +: S_DEST_WIDTH] >= M_BASE[k*S_DEST_WIDTH +: S_DEST_WIDTH] && int_s_axis_tdest[m*S_DEST_WIDTH +: S_DEST_WIDTH] <= M_TOP[k*S_DEST_WIDTH +: S_DEST_WIDTH] && (M_CONNECT & (1 << (m+k*S_COUNT)))) begin select_next = k; select_valid_next = 1'b1; drop_next = 1'b0; end end end end end always @(posedge clk) begin select_reg <= select_next; drop_reg <= drop_next; select_valid_reg <= select_valid_next; if (rst) begin select_valid_reg <= 1'b0; end end // forwarding assign int_axis_tvalid[m*M_COUNT +: M_COUNT] = (int_s_axis_tvalid[m] && select_valid_reg && !drop_reg) << select_reg; assign int_s_axis_tready[m] = int_axis_tready[select_reg*S_COUNT+m] || drop_reg; // S side register axis_register #( .DATA_WIDTH(DATA_WIDTH), .KEEP_ENABLE(KEEP_ENABLE), .KEEP_WIDTH(KEEP_WIDTH), .LAST_ENABLE(1), .ID_ENABLE(ID_ENABLE && S_ID_WIDTH > 0), .ID_WIDTH(S_ID_WIDTH_INT), .DEST_ENABLE(1), .DEST_WIDTH(S_DEST_WIDTH), .USER_ENABLE(USER_ENABLE), .USER_WIDTH(USER_WIDTH), .REG_TYPE(S_REG_TYPE) ) reg_inst ( .clk(clk), .rst(rst), // AXI input .s_axis_tdata(s_axis_tdata[m*DATA_WIDTH +: DATA_WIDTH]), .s_axis_tkeep(s_axis_tkeep[m*KEEP_WIDTH +: KEEP_WIDTH]), .s_axis_tvalid(s_axis_tvalid[m]), .s_axis_tready(s_axis_tready[m]), .s_axis_tlast(s_axis_tlast[m]), .s_axis_tid(s_axis_tid[m*S_ID_WIDTH +: S_ID_WIDTH_INT]), .s_axis_tdest(s_axis_tdest[m*S_DEST_WIDTH +: S_DEST_WIDTH]), .s_axis_tuser(s_axis_tuser[m*USER_WIDTH +: USER_WIDTH]), // AXI output .m_axis_tdata(int_s_axis_tdata[m*DATA_WIDTH +: DATA_WIDTH]), .m_axis_tkeep(int_s_axis_tkeep[m*KEEP_WIDTH +: KEEP_WIDTH]), .m_axis_tvalid(int_s_axis_tvalid[m]), .m_axis_tready(int_s_axis_tready[m]), .m_axis_tlast(int_s_axis_tlast[m]), .m_axis_tid(int_s_axis_tid[m*S_ID_WIDTH +: S_ID_WIDTH_INT]), .m_axis_tdest(int_s_axis_tdest[m*S_DEST_WIDTH +: S_DEST_WIDTH]), .m_axis_tuser(int_s_axis_tuser[m*USER_WIDTH +: USER_WIDTH]) ); end // s_ifaces for (n = 0; n < M_COUNT; n = n + 1) begin : m_ifaces // arbitration wire [S_COUNT-1:0] request; wire [S_COUNT-1:0] acknowledge; wire [S_COUNT-1:0] grant; wire grant_valid; wire [CL_S_COUNT-1:0] grant_encoded; arbiter #( .PORTS(S_COUNT), .ARB_TYPE_ROUND_ROBIN(ARB_TYPE_ROUND_ROBIN), .ARB_BLOCK(1), .ARB_BLOCK_ACK(1), .ARB_LSB_HIGH_PRIORITY(ARB_LSB_HIGH_PRIORITY) ) arb_inst ( .clk(clk), .rst(rst), .request(request), .acknowledge(acknowledge), .grant(grant), .grant_valid(grant_valid), .grant_encoded(grant_encoded) ); // mux reg [DATA_WIDTH-1:0] m_axis_tdata_mux; reg [KEEP_WIDTH-1:0] m_axis_tkeep_mux; reg m_axis_tvalid_mux; wire m_axis_tready_mux; reg m_axis_tlast_mux; reg [M_ID_WIDTH-1:0] m_axis_tid_mux; reg [M_DEST_WIDTH-1:0] m_axis_tdest_mux; reg [USER_WIDTH-1:0] m_axis_tuser_mux; always @* begin m_axis_tdata_mux = int_s_axis_tdata[grant_encoded*DATA_WIDTH +: DATA_WIDTH]; m_axis_tkeep_mux = int_s_axis_tkeep[grant_encoded*KEEP_WIDTH +: KEEP_WIDTH]; m_axis_tvalid_mux = int_axis_tvalid[grant_encoded*M_COUNT+n] && grant_valid; m_axis_tlast_mux = int_s_axis_tlast[grant_encoded]; m_axis_tid_mux = int_s_axis_tid[grant_encoded*S_ID_WIDTH +: S_ID_WIDTH_INT]; if (UPDATE_TID && S_COUNT > 1) begin m_axis_tid_mux[M_ID_WIDTH-1:M_ID_WIDTH-CL_S_COUNT] = grant_encoded; end m_axis_tdest_mux = int_s_axis_tdest[grant_encoded*S_DEST_WIDTH +: S_DEST_WIDTH]; m_axis_tuser_mux = int_s_axis_tuser[grant_encoded*USER_WIDTH +: USER_WIDTH]; end assign int_axis_tready[n*S_COUNT +: S_COUNT] = (grant_valid && m_axis_tready_mux) << grant_encoded; for (m = 0; m < S_COUNT; m = m + 1) begin assign request[m] = int_axis_tvalid[m*M_COUNT+n] && !grant[m]; assign acknowledge[m] = grant[m] && int_axis_tvalid[m*M_COUNT+n] && m_axis_tlast_mux && m_axis_tready_mux; end // M side register axis_register #( .DATA_WIDTH(DATA_WIDTH), .KEEP_ENABLE(KEEP_ENABLE), .KEEP_WIDTH(KEEP_WIDTH), .LAST_ENABLE(1), .ID_ENABLE(ID_ENABLE), .ID_WIDTH(M_ID_WIDTH), .DEST_ENABLE(M_DEST_WIDTH > 0), .DEST_WIDTH(M_DEST_WIDTH_INT), .USER_ENABLE(USER_ENABLE), .USER_WIDTH(USER_WIDTH), .REG_TYPE(M_REG_TYPE) ) reg_inst ( .clk(clk), .rst(rst), // AXI input .s_axis_tdata(m_axis_tdata_mux), .s_axis_tkeep(m_axis_tkeep_mux), .s_axis_tvalid(m_axis_tvalid_mux), .s_axis_tready(m_axis_tready_mux), .s_axis_tlast(m_axis_tlast_mux), .s_axis_tid(m_axis_tid_mux), .s_axis_tdest(m_axis_tdest_mux), .s_axis_tuser(m_axis_tuser_mux), // AXI output .m_axis_tdata(m_axis_tdata[n*DATA_WIDTH +: DATA_WIDTH]), .m_axis_tkeep(m_axis_tkeep[n*KEEP_WIDTH +: KEEP_WIDTH]), .m_axis_tvalid(m_axis_tvalid[n]), .m_axis_tready(m_axis_tready[n]), .m_axis_tlast(m_axis_tlast[n]), .m_axis_tid(m_axis_tid[n*M_ID_WIDTH +: M_ID_WIDTH]), .m_axis_tdest(m_axis_tdest[n*M_DEST_WIDTH +: M_DEST_WIDTH_INT]), .m_axis_tuser(m_axis_tuser[n*USER_WIDTH +: USER_WIDTH]) ); end // m_ifaces endgenerate endmodule `resetall