/* Copyright 2019, The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF CALIFORNIA OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of The Regents of the University of California. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * TDMA scheduler module */ module tdma_scheduler # ( // Timeslot index width parameter INDEX_WIDTH = 8, // Schedule absolute PTP start time, seconds part parameter SCHEDULE_START_S = 48'h0, // Schedule absolute PTP start time, nanoseconds part parameter SCHEDULE_START_NS = 30'h0, // Schedule period, seconds part parameter SCHEDULE_PERIOD_S = 48'd0, // Schedule period, nanoseconds part parameter SCHEDULE_PERIOD_NS = 30'd1000000, // Timeslot period, seconds part parameter TIMESLOT_PERIOD_S = 48'd0, // Timeslot period, nanoseconds part parameter TIMESLOT_PERIOD_NS = 30'd100000, // Timeslot active period, seconds part parameter ACTIVE_PERIOD_S = 48'd0, // Timeslot active period, nanoseconds part parameter ACTIVE_PERIOD_NS = 30'd100000 ) ( input wire clk, input wire rst, /* * Timestamp input from PTP clock */ input wire [95:0] input_ts_96, input wire input_ts_step, /* * Control */ input wire enable, input wire [79:0] input_schedule_start, input wire input_schedule_start_valid, input wire [79:0] input_schedule_period, input wire input_schedule_period_valid, input wire [79:0] input_timeslot_period, input wire input_timeslot_period_valid, input wire [79:0] input_active_period, input wire input_active_period_valid, /* * Status */ output wire locked, output wire error, /* * TDMA schedule outputs */ output wire schedule_start, output wire [INDEX_WIDTH-1:0] timeslot_index, output wire timeslot_start, output wire timeslot_end, output wire timeslot_active ); /* schedule start | V |<-------- schedule period -------->| -----+--------+--------+--------+--------+--------+--- | SLOT 0 | SLOT 1 | SLOT 2 | SLOT 3 | SLOT 0 | -----+--------+--------+--------+--------+--------+--- |<------>| timeslot period |<-------- timeslot period -------->| -----+-----------------------------------+------------ | SLOT 0 | SLOT 1 -----+-----------------------------------+------------ |<---- active period ----->| */ localparam [2:0] STATE_IDLE = 3'd0, STATE_UPDATE_SCHEDULE_1 = 3'd1, STATE_UPDATE_SCHEDULE_2 = 3'd2, STATE_UPDATE_SLOT_1 = 3'd3, STATE_UPDATE_SLOT_2 = 3'd4, STATE_UPDATE_SLOT_3 = 3'd5, STATE_WAIT = 3'd6; reg [2:0] state_reg = STATE_IDLE, state_next; reg [47:0] time_s_reg = 0; reg [30:0] time_ns_reg = 0; reg [47:0] first_slot_s_reg = 0, first_slot_s_next; reg [30:0] first_slot_ns_reg = 0, first_slot_ns_next; reg [47:0] next_slot_s_reg = 0, next_slot_s_next; reg [30:0] next_slot_ns_reg = 0, next_slot_ns_next; reg [47:0] active_end_s_reg = 0, active_end_s_next; reg [30:0] active_end_ns_reg = 0, active_end_ns_next; reg [47:0] schedule_start_s_reg = SCHEDULE_START_S; reg [30:0] schedule_start_ns_reg = SCHEDULE_START_NS; reg [47:0] schedule_period_s_reg = SCHEDULE_PERIOD_S; reg [30:0] schedule_period_ns_reg = SCHEDULE_PERIOD_NS; reg [47:0] timeslot_period_s_reg = TIMESLOT_PERIOD_S; reg [30:0] timeslot_period_ns_reg = TIMESLOT_PERIOD_NS; reg [47:0] active_period_s_reg = ACTIVE_PERIOD_S; reg [30:0] active_period_ns_reg = ACTIVE_PERIOD_NS; reg [29:0] ts_ns_inc_reg = 0, ts_ns_inc_next; reg [30:0] ts_ns_ovf_reg = 0, ts_ns_ovf_next; reg locked_reg = 1'b0; reg error_reg = 1'b0; reg output_reg = 1'b0, output_next; reg schedule_start_reg = 1'b0, schedule_start_next; reg [INDEX_WIDTH-1:0] timeslot_index_reg = 0, timeslot_index_next; reg timeslot_start_reg = 1'b0, timeslot_start_next; reg timeslot_end_reg = 1'b0, timeslot_end_next; reg timeslot_active_reg = 1'b0, timeslot_active_next; assign locked = locked_reg; assign error = error_reg; assign schedule_start = schedule_start_reg; assign timeslot_index = timeslot_index_reg; assign timeslot_start = timeslot_start_reg; assign timeslot_end = timeslot_end_reg; assign timeslot_active = timeslot_active_reg; always @* begin state_next = STATE_IDLE; first_slot_s_next = first_slot_s_reg; first_slot_ns_next = first_slot_ns_reg; next_slot_s_next = next_slot_s_reg; next_slot_ns_next = next_slot_ns_reg; active_end_s_next = active_end_s_reg; active_end_ns_next = active_end_ns_reg; ts_ns_inc_next = ts_ns_inc_reg; ts_ns_ovf_next = ts_ns_ovf_reg; schedule_start_next = 1'b0; timeslot_index_next = timeslot_index_reg; timeslot_start_next = 1'b0; timeslot_end_next = 1'b0; timeslot_active_next = timeslot_active_reg; case (state_reg) STATE_IDLE: begin // set next rise to start time first_slot_s_next = schedule_start_s_reg; first_slot_ns_next = schedule_start_ns_reg; next_slot_s_next = schedule_start_s_reg; next_slot_ns_next = schedule_start_ns_reg; if (input_schedule_start_valid || input_schedule_period_valid) begin state_next = STATE_IDLE; end else begin state_next = STATE_WAIT; end end STATE_UPDATE_SCHEDULE_1: begin // set next schedule start time to next schedule start time plus schedule period ts_ns_inc_next = first_slot_ns_reg + schedule_period_ns_reg; ts_ns_ovf_next = first_slot_ns_reg + schedule_period_ns_reg - 31'd1_000_000_000; if (input_schedule_start_valid || input_schedule_period_valid) begin state_next = STATE_IDLE; end else begin state_next = STATE_UPDATE_SCHEDULE_2; end end STATE_UPDATE_SCHEDULE_2: begin if (!ts_ns_ovf_reg[30]) begin // if the overflow lookahead did not borrow, one second has elapsed first_slot_s_next = first_slot_s_reg + schedule_period_s_reg + 1; first_slot_ns_next = ts_ns_ovf_reg; end else begin // no increment seconds field first_slot_s_next = first_slot_s_reg + schedule_period_s_reg; first_slot_ns_next = ts_ns_inc_reg; end next_slot_s_next = first_slot_s_reg; next_slot_ns_next = first_slot_ns_reg; if (input_schedule_start_valid || input_schedule_period_valid) begin state_next = STATE_IDLE; end else begin state_next = STATE_UPDATE_SLOT_1; end end STATE_UPDATE_SLOT_1: begin // set next fall time to next rise time plus width ts_ns_inc_next = next_slot_ns_reg + active_period_ns_reg; ts_ns_ovf_next = next_slot_ns_reg + active_period_ns_reg - 31'd1_000_000_000; if (input_schedule_start_valid || input_schedule_period_valid) begin state_next = STATE_IDLE; end else begin state_next = STATE_UPDATE_SLOT_2; end end STATE_UPDATE_SLOT_2: begin if (!ts_ns_ovf_reg[30]) begin // if the overflow lookahead did not borrow, one second has elapsed active_end_s_next = next_slot_s_reg + active_period_s_reg + 1; active_end_ns_next = ts_ns_ovf_reg; end else begin // no increment seconds field active_end_s_next = next_slot_s_reg + active_period_s_reg; active_end_ns_next = ts_ns_inc_reg; end // set next timeslot start time to next timeslot start time plus timeslot period ts_ns_inc_next = next_slot_ns_reg + timeslot_period_ns_reg; ts_ns_ovf_next = next_slot_ns_reg + timeslot_period_ns_reg - 31'd1_000_000_000; if (input_schedule_start_valid || input_schedule_period_valid) begin state_next = STATE_IDLE; end else begin state_next = STATE_UPDATE_SLOT_3; end end STATE_UPDATE_SLOT_3: begin if (!ts_ns_ovf_reg[30]) begin // if the overflow lookahead did not borrow, one second has elapsed next_slot_s_next = next_slot_s_reg + timeslot_period_s_reg + 1; next_slot_ns_next = ts_ns_ovf_reg; end else begin // no increment seconds field next_slot_s_next = next_slot_s_reg + timeslot_period_s_reg; next_slot_ns_next = ts_ns_inc_reg; end if (input_schedule_start_valid || input_schedule_period_valid) begin state_next = STATE_IDLE; end else begin state_next = STATE_WAIT; end end STATE_WAIT: begin if (input_schedule_start_valid || input_schedule_period_valid) begin state_next = STATE_IDLE; end else if ((time_s_reg > first_slot_s_reg) || (time_s_reg == first_slot_s_reg && time_ns_reg > first_slot_ns_reg)) begin // start of next schedule period schedule_start_next = enable; timeslot_index_next = 0; timeslot_start_next = enable; timeslot_end_next = timeslot_active_reg && enable; timeslot_active_next = enable; state_next = STATE_UPDATE_SCHEDULE_1; end else if ((time_s_reg > next_slot_s_reg) || (time_s_reg == next_slot_s_reg && time_ns_reg > next_slot_ns_reg)) begin // start of next timeslot timeslot_index_next = timeslot_index_reg + 1; timeslot_start_next = enable; timeslot_end_next = timeslot_active_reg && enable; timeslot_active_next = enable; state_next = STATE_UPDATE_SLOT_1; end else if (timeslot_active_reg && ((time_s_reg > active_end_s_reg) || (time_s_reg == active_end_s_reg && time_ns_reg > active_end_ns_reg))) begin // start of next timeslot timeslot_end_next = enable; timeslot_active_next = 1'b0; state_next = STATE_WAIT; end else begin state_next = STATE_WAIT; end end endcase end always @(posedge clk) begin state_reg <= state_next; time_s_reg <= input_ts_96[95:48]; time_ns_reg <= input_ts_96[45:16]; if (input_schedule_start_valid) begin schedule_start_s_reg <= input_schedule_start[79:32]; schedule_start_ns_reg <= input_schedule_start[31:0]; end if (input_schedule_period_valid) begin schedule_period_s_reg <= input_schedule_period[79:32]; schedule_period_ns_reg <= input_schedule_period[31:0]; end if (input_timeslot_period_valid) begin timeslot_period_s_reg <= input_timeslot_period[79:32]; timeslot_period_ns_reg <= input_timeslot_period[31:0]; end if (input_active_period_valid) begin active_period_s_reg <= input_active_period[79:32]; active_period_ns_reg <= input_active_period[31:0]; end first_slot_s_reg <= first_slot_s_next; first_slot_ns_reg <= first_slot_ns_next; next_slot_s_reg <= next_slot_s_next; next_slot_ns_reg <= next_slot_ns_next; active_end_s_reg <= active_end_s_next; active_end_ns_reg <= active_end_ns_next; ts_ns_inc_reg <= ts_ns_inc_next; ts_ns_ovf_reg <= ts_ns_ovf_next; schedule_start_reg <= schedule_start_next; timeslot_index_reg <= timeslot_index_next; timeslot_start_reg <= timeslot_start_next; timeslot_end_reg <= timeslot_end_next; timeslot_active_reg <= timeslot_active_next; if (rst) begin state_reg <= STATE_IDLE; time_s_reg <= 0; time_ns_reg <= 0; schedule_start_s_reg <= SCHEDULE_START_S; schedule_start_ns_reg <= SCHEDULE_START_NS; schedule_period_s_reg <= SCHEDULE_PERIOD_S; schedule_period_ns_reg <= SCHEDULE_PERIOD_NS; timeslot_period_s_reg <= TIMESLOT_PERIOD_S; timeslot_period_ns_reg <= TIMESLOT_PERIOD_NS; active_period_s_reg <= ACTIVE_PERIOD_S; active_period_ns_reg <= ACTIVE_PERIOD_NS; locked_reg <= 1'b0; error_reg <= 1'b0; schedule_start_reg <= 1'b0; timeslot_index_reg <= 0; timeslot_start_reg <= 1'b0; timeslot_end_reg <= 1'b0; timeslot_active_reg <= 1'b0; end end endmodule