/* Copyright (c) 2016-2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4-Stream consistent overhead byte stuffing (COBS) encoder */ module axis_cobs_encode # ( // append zero for in band framing parameter APPEND_ZERO = 1 ) ( input wire clk, input wire rst, /* * AXI input */ input wire [7:0] s_axis_tdata, input wire s_axis_tvalid, output wire s_axis_tready, input wire s_axis_tlast, input wire s_axis_tuser, /* * AXI output */ output wire [7:0] m_axis_tdata, output wire m_axis_tvalid, input wire m_axis_tready, output wire m_axis_tlast, output wire m_axis_tuser ); // state register localparam [1:0] INPUT_STATE_IDLE = 2'd0, INPUT_STATE_SEGMENT = 2'd1, INPUT_STATE_FINAL_ZERO = 2'd2, INPUT_STATE_APPEND_ZERO = 2'd3; reg [1:0] input_state_reg = INPUT_STATE_IDLE, input_state_next; localparam [0:0] OUTPUT_STATE_IDLE = 1'd0, OUTPUT_STATE_SEGMENT = 1'd1; reg [0:0] output_state_reg = OUTPUT_STATE_IDLE, output_state_next; reg [7:0] input_count_reg = 8'd0, input_count_next; reg [7:0] output_count_reg = 8'd0, output_count_next; reg fail_frame_reg = 1'b0, fail_frame_next; // internal datapath reg [7:0] m_axis_tdata_int; reg m_axis_tvalid_int; reg m_axis_tready_int_reg = 1'b0; reg m_axis_tlast_int; reg m_axis_tuser_int; wire m_axis_tready_int_early; reg s_axis_tready_mask; reg [7:0] code_fifo_in_tdata; reg code_fifo_in_tvalid; reg code_fifo_in_tlast; reg code_fifo_in_tuser; wire code_fifo_in_tready; wire [7:0] code_fifo_out_tdata; wire code_fifo_out_tvalid; wire code_fifo_out_tlast; wire code_fifo_out_tuser; reg code_fifo_out_tready; reg [7:0] data_fifo_in_tdata; reg data_fifo_in_tvalid; reg data_fifo_in_tlast; wire data_fifo_in_tready; wire [7:0] data_fifo_out_tdata; wire data_fifo_out_tvalid; wire data_fifo_out_tlast; reg data_fifo_out_tready; assign s_axis_tready = code_fifo_in_tready && data_fifo_in_tready && s_axis_tready_mask; axis_fifo #( .DEPTH(256), .DATA_WIDTH(8), .KEEP_ENABLE(0), .LAST_ENABLE(1), .ID_ENABLE(0), .DEST_ENABLE(0), .USER_ENABLE(1), .USER_WIDTH(1), .FRAME_FIFO(0) ) code_fifo_inst ( .clk(clk), .rst(rst), // AXI input .s_axis_tdata(code_fifo_in_tdata), .s_axis_tkeep(0), .s_axis_tvalid(code_fifo_in_tvalid), .s_axis_tready(code_fifo_in_tready), .s_axis_tlast(code_fifo_in_tlast), .s_axis_tid(0), .s_axis_tdest(0), .s_axis_tuser(code_fifo_in_tuser), // AXI output .m_axis_tdata(code_fifo_out_tdata), .m_axis_tkeep(), .m_axis_tvalid(code_fifo_out_tvalid), .m_axis_tready(code_fifo_out_tready), .m_axis_tlast(code_fifo_out_tlast), .m_axis_tid(), .m_axis_tdest(), .m_axis_tuser(code_fifo_out_tuser), // Status .status_overflow(), .status_bad_frame(), .status_good_frame() ); axis_fifo #( .DEPTH(256), .DATA_WIDTH(8), .KEEP_ENABLE(0), .LAST_ENABLE(1), .ID_ENABLE(0), .DEST_ENABLE(0), .USER_ENABLE(0), .FRAME_FIFO(0) ) data_fifo_inst ( .clk(clk), .rst(rst), // AXI input .s_axis_tdata(data_fifo_in_tdata), .s_axis_tkeep(0), .s_axis_tvalid(data_fifo_in_tvalid), .s_axis_tready(data_fifo_in_tready), .s_axis_tlast(data_fifo_in_tlast), .s_axis_tid(0), .s_axis_tdest(0), .s_axis_tuser(0), // AXI output .m_axis_tdata(data_fifo_out_tdata), .m_axis_tkeep(), .m_axis_tvalid(data_fifo_out_tvalid), .m_axis_tready(data_fifo_out_tready), .m_axis_tlast(data_fifo_out_tlast), .m_axis_tid(), .m_axis_tdest(), .m_axis_tuser(), // Status .status_overflow(), .status_bad_frame(), .status_good_frame() ); always @* begin input_state_next = INPUT_STATE_IDLE; input_count_next = input_count_reg; fail_frame_next = fail_frame_reg; s_axis_tready_mask = 1'b0; code_fifo_in_tdata = 8'd0; code_fifo_in_tvalid = 1'b0; code_fifo_in_tlast = 1'b0; code_fifo_in_tuser = 1'b0; data_fifo_in_tdata = s_axis_tdata; data_fifo_in_tvalid = 1'b0; data_fifo_in_tlast = 1'b0; case (input_state_reg) INPUT_STATE_IDLE: begin // idle state s_axis_tready_mask = 1'b1; fail_frame_next = 1'b0; if (s_axis_tready && s_axis_tvalid) begin // valid input data if (s_axis_tdata == 8'd0 || (s_axis_tlast && s_axis_tuser)) begin // got a zero or propagated error, so store a zero code code_fifo_in_tdata = 8'd1; code_fifo_in_tvalid = 1'b1; if (s_axis_tlast) begin // last byte, so close out the frame fail_frame_next = s_axis_tuser; input_state_next = INPUT_STATE_FINAL_ZERO; end else begin // return to idle to await next segment input_state_next = INPUT_STATE_IDLE; end end else begin // got something other than a zero, so store it and init the segment counter input_count_next = 8'd2; data_fifo_in_tdata = s_axis_tdata; data_fifo_in_tvalid = 1'b1; if (s_axis_tlast) begin // last byte, so store the code and close out the frame code_fifo_in_tdata = 8'd2; code_fifo_in_tvalid = 1'b1; if (APPEND_ZERO) begin // zero frame mode, need to add a zero code to end the frame input_state_next = INPUT_STATE_APPEND_ZERO; end else begin // normal frame mode, close out the frame data_fifo_in_tlast = 1'b1; input_state_next = INPUT_STATE_IDLE; end end else begin // await more segment data input_state_next = INPUT_STATE_SEGMENT; end end end else begin input_state_next = INPUT_STATE_IDLE; end end INPUT_STATE_SEGMENT: begin // encode segment s_axis_tready_mask = 1'b1; fail_frame_next = 1'b0; if (s_axis_tready && s_axis_tvalid) begin // valid input data if (s_axis_tdata == 8'd0 || (s_axis_tlast && s_axis_tuser)) begin // got a zero or propagated error, so store the code code_fifo_in_tdata = input_count_reg; code_fifo_in_tvalid = 1'b1; if (s_axis_tlast) begin // last byte, so close out the frame fail_frame_next = s_axis_tuser; input_state_next = INPUT_STATE_FINAL_ZERO; end else begin // return to idle to await next segment input_state_next = INPUT_STATE_IDLE; end end else begin // got something other than a zero, so store it and increment the segment counter input_count_next = input_count_reg+1; data_fifo_in_tdata = s_axis_tdata; data_fifo_in_tvalid = 1'b1; if (input_count_reg == 8'd254) begin // 254 bytes in frame, so dump and reset counter code_fifo_in_tdata = input_count_reg+1; code_fifo_in_tvalid = 1'b1; input_count_next = 8'd1; end if (s_axis_tlast) begin // last byte, so store the code and close out the frame code_fifo_in_tdata = input_count_reg+1; code_fifo_in_tvalid = 1'b1; if (APPEND_ZERO) begin // zero frame mode, need to add a zero code to end the frame input_state_next = INPUT_STATE_APPEND_ZERO; end else begin // normal frame mode, close out the frame data_fifo_in_tlast = 1'b1; input_state_next = INPUT_STATE_IDLE; end end else begin // await more segment data input_state_next = INPUT_STATE_SEGMENT; end end end else begin input_state_next = INPUT_STATE_SEGMENT; end end INPUT_STATE_FINAL_ZERO: begin // final zero code required s_axis_tready_mask = 1'b0; if (code_fifo_in_tready) begin // push a zero code and close out frame if (fail_frame_reg) begin code_fifo_in_tdata = 8'd2; code_fifo_in_tuser = 1'b1; end else begin code_fifo_in_tdata = 8'd1; end code_fifo_in_tvalid = 1'b1; if (APPEND_ZERO) begin // zero frame mode, need to add a zero code to end the frame input_state_next = INPUT_STATE_APPEND_ZERO; end else begin // normal frame mode, close out the frame code_fifo_in_tlast = 1'b1; fail_frame_next = 1'b0; input_state_next = INPUT_STATE_IDLE; end end else begin input_state_next = INPUT_STATE_FINAL_ZERO; end end INPUT_STATE_APPEND_ZERO: begin // append zero for zero framing s_axis_tready_mask = 1'b0; if (code_fifo_in_tready) begin // push frame termination code and close out frame code_fifo_in_tdata = 8'd0; code_fifo_in_tlast = 1'b1; code_fifo_in_tuser = fail_frame_reg; code_fifo_in_tvalid = 1'b1; fail_frame_next = 1'b0; input_state_next = INPUT_STATE_IDLE; end else begin input_state_next = INPUT_STATE_APPEND_ZERO; end end endcase end always @* begin output_state_next = OUTPUT_STATE_IDLE; output_count_next = output_count_reg; m_axis_tdata_int = 8'd0; m_axis_tvalid_int = 1'b0; m_axis_tlast_int = 1'b0; m_axis_tuser_int = 1'b0; code_fifo_out_tready = 1'b0; data_fifo_out_tready = 1'b0; case (output_state_reg) OUTPUT_STATE_IDLE: begin // idle state if (m_axis_tready_int_reg && code_fifo_out_tvalid) begin // transfer out code byte and load counter m_axis_tdata_int = code_fifo_out_tdata; m_axis_tlast_int = code_fifo_out_tlast; m_axis_tuser_int = code_fifo_out_tuser && code_fifo_out_tlast; output_count_next = code_fifo_out_tdata-1; m_axis_tvalid_int = 1'b1; code_fifo_out_tready = 1'b1; if (code_fifo_out_tdata == 8'd0 || code_fifo_out_tdata == 8'd1 || code_fifo_out_tuser) begin // frame termination and zero codes will be followed by codes output_state_next = OUTPUT_STATE_IDLE; end else begin // transfer out data output_state_next = OUTPUT_STATE_SEGMENT; end end else begin output_state_next = OUTPUT_STATE_IDLE; end end OUTPUT_STATE_SEGMENT: begin // segment output if (m_axis_tready_int_reg && data_fifo_out_tvalid) begin // transfer out data byte and decrement counter m_axis_tdata_int = data_fifo_out_tdata; m_axis_tlast_int = data_fifo_out_tlast; output_count_next = output_count_reg - 1; m_axis_tvalid_int = 1'b1; data_fifo_out_tready = 1'b1; if (output_count_reg == 1'b1) begin // done with segment, get a code byte next output_state_next = OUTPUT_STATE_IDLE; end else begin // more data to transfer output_state_next = OUTPUT_STATE_SEGMENT; end end else begin output_state_next = OUTPUT_STATE_SEGMENT; end end endcase end always @(posedge clk) begin if (rst) begin input_state_reg <= INPUT_STATE_IDLE; output_state_reg <= OUTPUT_STATE_IDLE; end else begin input_state_reg <= input_state_next; output_state_reg <= output_state_next; end input_count_reg <= input_count_next; output_count_reg <= output_count_next; fail_frame_reg <= fail_frame_next; end // output datapath logic reg [7:0] m_axis_tdata_reg = 8'd0; reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next; reg m_axis_tlast_reg = 1'b0; reg m_axis_tuser_reg = 1'b0; reg [7:0] temp_m_axis_tdata_reg = 8'd0; reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next; reg temp_m_axis_tlast_reg = 1'b0; reg temp_m_axis_tuser_reg = 1'b0; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_axis_temp_to_output; assign m_axis_tdata = m_axis_tdata_reg; assign m_axis_tvalid = m_axis_tvalid_reg; assign m_axis_tlast = m_axis_tlast_reg; assign m_axis_tuser = m_axis_tuser_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int)); always @* begin // transfer sink ready state to source m_axis_tvalid_next = m_axis_tvalid_reg; temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_temp_to_output = 1'b0; if (m_axis_tready_int_reg) begin // input is ready if (m_axis_tready || !m_axis_tvalid_reg) begin // output is ready or currently not valid, transfer data to output m_axis_tvalid_next = m_axis_tvalid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axis_tvalid_next = m_axis_tvalid_int; store_axis_int_to_temp = 1'b1; end end else if (m_axis_tready) begin // input is not ready, but output is ready m_axis_tvalid_next = temp_m_axis_tvalid_reg; temp_m_axis_tvalid_next = 1'b0; store_axis_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin m_axis_tvalid_reg <= 1'b0; m_axis_tready_int_reg <= 1'b0; temp_m_axis_tvalid_reg <= 1'b0; end else begin m_axis_tvalid_reg <= m_axis_tvalid_next; m_axis_tready_int_reg <= m_axis_tready_int_early; temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next; end // datapath if (store_axis_int_to_output) begin m_axis_tdata_reg <= m_axis_tdata_int; m_axis_tlast_reg <= m_axis_tlast_int; m_axis_tuser_reg <= m_axis_tuser_int; end else if (store_axis_temp_to_output) begin m_axis_tdata_reg <= temp_m_axis_tdata_reg; m_axis_tlast_reg <= temp_m_axis_tlast_reg; m_axis_tuser_reg <= temp_m_axis_tuser_reg; end if (store_axis_int_to_temp) begin temp_m_axis_tdata_reg <= m_axis_tdata_int; temp_m_axis_tlast_reg <= m_axis_tlast_int; temp_m_axis_tuser_reg <= m_axis_tuser_int; end end endmodule `resetall