/* Copyright (c) 2023 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * I2C single register */ module i2c_single_reg #( parameter FILTER_LEN = 4, parameter DEV_ADDR = 7'h70 ) ( input wire clk, input wire rst, /* * I2C interface */ input wire scl_i, output wire scl_o, output wire scl_t, input wire sda_i, output wire sda_o, output wire sda_t, /* * Data register */ input wire [7:0] data_in, input wire data_latch, output wire [7:0] data_out ); localparam [4:0] STATE_IDLE = 4'd0, STATE_ADDRESS = 4'd1, STATE_ACK = 4'd2, STATE_WRITE_1 = 4'd3, STATE_WRITE_2 = 4'd4, STATE_READ_1 = 4'd5, STATE_READ_2 = 4'd6, STATE_READ_3 = 4'd7; reg [4:0] state_reg = STATE_IDLE; reg [7:0] data_reg = 8'd0; reg [7:0] shift_reg = 8'd0; reg mode_read_reg = 1'b0; reg [3:0] bit_count_reg = 4'd0; reg [FILTER_LEN-1:0] scl_i_filter_reg = {FILTER_LEN{1'b1}}; reg [FILTER_LEN-1:0] sda_i_filter_reg = {FILTER_LEN{1'b1}}; reg scl_i_reg = 1'b1; reg sda_i_reg = 1'b1; reg sda_o_reg = 1'b1; reg last_scl_i_reg = 1'b1; reg last_sda_i_reg = 1'b1; assign scl_o = 1'b1; assign scl_t = 1'b1; assign sda_o = sda_o_reg; assign sda_t = sda_o_reg; assign data_out = data_reg; wire scl_posedge = scl_i_reg && !last_scl_i_reg; wire scl_negedge = !scl_i_reg && last_scl_i_reg; wire sda_posedge = sda_i_reg && !last_sda_i_reg; wire sda_negedge = !sda_i_reg && last_sda_i_reg; wire start_bit = sda_negedge && scl_i_reg; wire stop_bit = sda_posedge && scl_i_reg; always @(posedge clk) begin if (start_bit) begin sda_o_reg <= 1'b1; bit_count_reg = 4'd7; state_reg <= STATE_ADDRESS; end else if (stop_bit) begin sda_o_reg <= 1'b1; state_reg <= STATE_IDLE; end else begin case (state_reg) STATE_IDLE: begin // line idle sda_o_reg <= 1'b1; state_reg <= STATE_IDLE; end STATE_ADDRESS: begin // read address sda_o_reg <= 1'b1; if (scl_posedge) begin if (bit_count_reg > 0) begin // shift in address bit_count_reg <= bit_count_reg-1; shift_reg <= {shift_reg[6:0], sda_i_reg}; state_reg <= STATE_ADDRESS; end else begin // check address mode_read_reg <= sda_i_reg; if (shift_reg[6:0] == DEV_ADDR) begin // it's a match, send ACK state_reg <= STATE_ACK; end else begin // no match, return to idle state_reg <= STATE_IDLE; end end end else begin state_reg <= STATE_ADDRESS; end end STATE_ACK: begin // send ACK bit if (scl_negedge) begin sda_o_reg <= 1'b0; bit_count_reg <= 4'd7; if (mode_read_reg) begin // reading shift_reg <= data_reg; state_reg <= STATE_READ_1; end else begin // writing state_reg <= STATE_WRITE_1; end end else begin state_reg <= STATE_ACK; end end STATE_WRITE_1: begin // write data byte if (scl_negedge) begin sda_o_reg <= 1'b1; state_reg <= STATE_WRITE_2; end else begin state_reg <= STATE_WRITE_1; end end STATE_WRITE_2: begin // write data byte sda_o_reg <= 1'b1; if (scl_posedge) begin // shift in data bit shift_reg <= {shift_reg[6:0], sda_i_reg}; if (bit_count_reg > 0) begin bit_count_reg <= bit_count_reg-1; state_reg <= STATE_WRITE_2; end else begin data_reg <= {shift_reg[6:0], sda_i_reg}; state_reg <= STATE_ACK; end end else begin state_reg <= STATE_WRITE_2; end end STATE_READ_1: begin // read data byte if (scl_negedge) begin // shift out data bit {sda_o_reg, shift_reg} = {shift_reg, sda_i_reg}; if (bit_count_reg > 0) begin bit_count_reg = bit_count_reg-1; state_reg = STATE_READ_1; end else begin state_reg = STATE_READ_2; end end else begin state_reg = STATE_READ_1; end end STATE_READ_2: begin // read ACK bit if (scl_negedge) begin // release SDA sda_o_reg <= 1'b1; state_reg <= STATE_READ_3; end else begin state_reg <= STATE_READ_2; end end STATE_READ_3: begin // read ACK bit if (scl_posedge) begin if (sda_i_reg) begin // NACK, return to idle state_reg <= STATE_IDLE; end else begin // ACK, read another byte bit_count_reg <= 4'd7; shift_reg <= data_reg; state_reg <= STATE_READ_1; end end else begin state_reg <= STATE_READ_3; end end endcase end if (data_latch) begin data_reg <= data_in; end scl_i_filter_reg <= (scl_i_filter_reg << 1) | scl_i; sda_i_filter_reg <= (sda_i_filter_reg << 1) | sda_i; if (scl_i_filter_reg == {FILTER_LEN{1'b1}}) begin scl_i_reg <= 1'b1; end else if (scl_i_filter_reg == {FILTER_LEN{1'b0}}) begin scl_i_reg <= 1'b0; end if (sda_i_filter_reg == {FILTER_LEN{1'b1}}) begin sda_i_reg <= 1'b1; end else if (sda_i_filter_reg == {FILTER_LEN{1'b0}}) begin sda_i_reg <= 1'b0; end last_scl_i_reg <= scl_i_reg; last_sda_i_reg <= sda_i_reg; if (rst) begin state_reg <= STATE_IDLE; sda_o_reg <= 1'b1; end end endmodule `resetall