/* Copyright (c) 2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * Ultrascale PCIe CQ demultiplexer */ module pcie_us_axis_cq_demux # ( // Output count parameter M_COUNT = 2, // Width of PCIe AXI stream interfaces in bits parameter AXIS_PCIE_DATA_WIDTH = 256, // PCIe AXI stream tkeep signal width (words per cycle) parameter AXIS_PCIE_KEEP_WIDTH = (AXIS_PCIE_DATA_WIDTH/32), // PCIe AXI stream CQ tuser signal width parameter AXIS_PCIE_CQ_USER_WIDTH = 85 ) ( input wire clk, input wire rst, /* * AXI input (CQ) */ input wire [AXIS_PCIE_DATA_WIDTH-1:0] s_axis_cq_tdata, input wire [AXIS_PCIE_KEEP_WIDTH-1:0] s_axis_cq_tkeep, input wire s_axis_cq_tvalid, output wire s_axis_cq_tready, input wire s_axis_cq_tlast, input wire [AXIS_PCIE_CQ_USER_WIDTH-1:0] s_axis_cq_tuser, /* * AXI output (CQ) */ output wire [M_COUNT*AXIS_PCIE_DATA_WIDTH-1:0] m_axis_cq_tdata, output wire [M_COUNT*AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_cq_tkeep, output wire [M_COUNT-1:0] m_axis_cq_tvalid, input wire [M_COUNT-1:0] m_axis_cq_tready, output wire [M_COUNT-1:0] m_axis_cq_tlast, output wire [M_COUNT*AXIS_PCIE_CQ_USER_WIDTH-1:0] m_axis_cq_tuser, /* * Fields */ output wire [3:0] req_type, output wire [7:0] target_function, output wire [2:0] bar_id, output wire [7:0] msg_code, output wire [2:0] msg_routing, /* * Control */ input wire enable, input wire drop, input wire [M_COUNT-1:0] select ); parameter CL_M_COUNT = $clog2(M_COUNT); // bus width assertions initial begin if (AXIS_PCIE_DATA_WIDTH != 64 && AXIS_PCIE_DATA_WIDTH != 128 && AXIS_PCIE_DATA_WIDTH != 256) begin $error("Error: PCIe interface width must be 64, 128, or 256 (instance %m)"); $finish; end if (AXIS_PCIE_KEEP_WIDTH * 32 != AXIS_PCIE_DATA_WIDTH) begin $error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)"); $finish; end end reg [CL_M_COUNT-1:0] select_reg = {CL_M_COUNT{1'b0}}, select_ctl, select_next; reg drop_reg = 1'b0, drop_ctl, drop_next; reg frame_reg = 1'b0, frame_ctl, frame_next; reg s_axis_cq_tready_reg = 1'b0, s_axis_cq_tready_next; reg [AXIS_PCIE_DATA_WIDTH-1:0] temp_s_axis_cq_tdata = {AXIS_PCIE_DATA_WIDTH{1'b0}}; reg [AXIS_PCIE_KEEP_WIDTH-1:0] temp_s_axis_cq_tkeep = {AXIS_PCIE_KEEP_WIDTH{1'b0}}; reg temp_s_axis_cq_tvalid = 1'b0; reg temp_s_axis_cq_tlast = 1'b0; reg [AXIS_PCIE_CQ_USER_WIDTH-1:0] temp_s_axis_cq_tuser = {AXIS_PCIE_CQ_USER_WIDTH{1'b0}}; // internal datapath reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_cq_tdata_int; reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_cq_tkeep_int; reg [M_COUNT-1:0] m_axis_cq_tvalid_int; reg m_axis_cq_tready_int_reg = 1'b0; reg m_axis_cq_tlast_int; reg [AXIS_PCIE_CQ_USER_WIDTH-1:0] m_axis_cq_tuser_int; wire m_axis_cq_tready_int_early; assign s_axis_cq_tready = (s_axis_cq_tready_reg || (AXIS_PCIE_DATA_WIDTH == 64 && !temp_s_axis_cq_tvalid)) && enable; assign req_type = AXIS_PCIE_DATA_WIDTH > 64 ? s_axis_cq_tdata[78:75] : s_axis_cq_tdata[14:11]; assign target_function = AXIS_PCIE_DATA_WIDTH > 64 ? s_axis_cq_tdata[111:104] : s_axis_cq_tdata[47:40]; assign bar_id = AXIS_PCIE_DATA_WIDTH > 64 ? s_axis_cq_tdata[114:112] : s_axis_cq_tdata[50:48]; assign msg_code = AXIS_PCIE_DATA_WIDTH > 64 ? s_axis_cq_tdata[111:104] : s_axis_cq_tdata[47:40]; assign msg_routing = AXIS_PCIE_DATA_WIDTH > 64 ? s_axis_cq_tdata[114:112] : s_axis_cq_tdata[50:48]; integer i; always @* begin select_next = select_reg; select_ctl = select_reg; drop_next = drop_reg; drop_ctl = drop_reg; frame_next = frame_reg; frame_ctl = frame_reg; s_axis_cq_tready_next = 1'b0; if (AXIS_PCIE_DATA_WIDTH == 64) begin if (temp_s_axis_cq_tvalid && s_axis_cq_tready) begin // end of frame detection if (temp_s_axis_cq_tlast) begin frame_next = 1'b0; drop_next = 1'b0; end end end else begin if (s_axis_cq_tvalid && s_axis_cq_tready) begin // end of frame detection if (s_axis_cq_tlast) begin frame_next = 1'b0; drop_next = 1'b0; end end end if (!frame_reg && (AXIS_PCIE_DATA_WIDTH == 64 ? temp_s_axis_cq_tvalid : s_axis_cq_tvalid) && s_axis_cq_tready) begin // start of frame, grab select value select_ctl = 0; drop_ctl = 1'b1; frame_ctl = 1'b1; for (i = M_COUNT-1; i >= 0; i = i - 1) begin if (select[i]) begin select_ctl = i; drop_ctl = 1'b0; end end drop_ctl = drop_ctl || drop; if (AXIS_PCIE_DATA_WIDTH == 64) begin if (!(s_axis_cq_tready && temp_s_axis_cq_tvalid && temp_s_axis_cq_tlast)) begin select_next = select_ctl; drop_next = drop_ctl; frame_next = 1'b1; end end else begin if (!(s_axis_cq_tready && s_axis_cq_tvalid && s_axis_cq_tlast)) begin select_next = select_ctl; drop_next = drop_ctl; frame_next = 1'b1; end end end s_axis_cq_tready_next = m_axis_cq_tready_int_early || drop_ctl; if (AXIS_PCIE_DATA_WIDTH == 64) begin m_axis_cq_tdata_int = temp_s_axis_cq_tdata; m_axis_cq_tkeep_int = temp_s_axis_cq_tkeep; m_axis_cq_tvalid_int = (temp_s_axis_cq_tvalid && s_axis_cq_tready && !drop_ctl) << select_ctl; m_axis_cq_tlast_int = temp_s_axis_cq_tlast; m_axis_cq_tuser_int = temp_s_axis_cq_tuser; end else begin m_axis_cq_tdata_int = s_axis_cq_tdata; m_axis_cq_tkeep_int = s_axis_cq_tkeep; m_axis_cq_tvalid_int = (s_axis_cq_tvalid && s_axis_cq_tready && !drop_ctl) << select_ctl; m_axis_cq_tlast_int = s_axis_cq_tlast; m_axis_cq_tuser_int = s_axis_cq_tuser; end end always @(posedge clk) begin if (rst) begin select_reg <= 2'd0; drop_reg <= 1'b0; frame_reg <= 1'b0; s_axis_cq_tready_reg <= 1'b0; end else begin select_reg <= select_next; drop_reg <= drop_next; frame_reg <= frame_next; s_axis_cq_tready_reg <= s_axis_cq_tready_next; end if (s_axis_cq_tready && AXIS_PCIE_DATA_WIDTH == 64) begin temp_s_axis_cq_tdata <= s_axis_cq_tdata; temp_s_axis_cq_tkeep <= s_axis_cq_tkeep; temp_s_axis_cq_tvalid <= s_axis_cq_tvalid; temp_s_axis_cq_tlast <= s_axis_cq_tlast; temp_s_axis_cq_tuser <= s_axis_cq_tuser; end end // output datapath logic reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_cq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}}; reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_cq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}}; reg [M_COUNT-1:0] m_axis_cq_tvalid_reg = {M_COUNT{1'b0}}, m_axis_cq_tvalid_next; reg m_axis_cq_tlast_reg = 1'b0; reg [AXIS_PCIE_CQ_USER_WIDTH-1:0] m_axis_cq_tuser_reg = {AXIS_PCIE_CQ_USER_WIDTH{1'b0}}; reg [AXIS_PCIE_DATA_WIDTH-1:0] temp_m_axis_cq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}}; reg [AXIS_PCIE_KEEP_WIDTH-1:0] temp_m_axis_cq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}}; reg [M_COUNT-1:0] temp_m_axis_cq_tvalid_reg = {M_COUNT{1'b0}}, temp_m_axis_cq_tvalid_next; reg temp_m_axis_cq_tlast_reg = 1'b0; reg [AXIS_PCIE_CQ_USER_WIDTH-1:0] temp_m_axis_cq_tuser_reg = {AXIS_PCIE_CQ_USER_WIDTH{1'b0}}; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_axis_cq_temp_to_output; assign m_axis_cq_tdata = {M_COUNT{m_axis_cq_tdata_reg}}; assign m_axis_cq_tkeep = {M_COUNT{m_axis_cq_tkeep_reg}}; assign m_axis_cq_tvalid = m_axis_cq_tvalid_reg; assign m_axis_cq_tlast = {M_COUNT{m_axis_cq_tlast_reg}}; assign m_axis_cq_tuser = {M_COUNT{m_axis_cq_tuser_reg}}; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign m_axis_cq_tready_int_early = (m_axis_cq_tready & m_axis_cq_tvalid) || (!temp_m_axis_cq_tvalid_reg && (!m_axis_cq_tvalid || !m_axis_cq_tvalid_int)); always @* begin // transfer sink ready state to source m_axis_cq_tvalid_next = m_axis_cq_tvalid_reg; temp_m_axis_cq_tvalid_next = temp_m_axis_cq_tvalid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_cq_temp_to_output = 1'b0; if (m_axis_cq_tready_int_reg) begin // input is ready if ((m_axis_cq_tready & m_axis_cq_tvalid) || !m_axis_cq_tvalid) begin // output is ready or currently not valid, transfer data to output m_axis_cq_tvalid_next = m_axis_cq_tvalid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axis_cq_tvalid_next = m_axis_cq_tvalid_int; store_axis_int_to_temp = 1'b1; end end else if (m_axis_cq_tready & m_axis_cq_tvalid) begin // input is not ready, but output is ready m_axis_cq_tvalid_next = temp_m_axis_cq_tvalid_reg; temp_m_axis_cq_tvalid_next = 1'b0; store_axis_cq_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin m_axis_cq_tvalid_reg <= {M_COUNT{1'b0}}; m_axis_cq_tready_int_reg <= 1'b0; temp_m_axis_cq_tvalid_reg <= 1'b0; end else begin m_axis_cq_tvalid_reg <= m_axis_cq_tvalid_next; m_axis_cq_tready_int_reg <= m_axis_cq_tready_int_early; temp_m_axis_cq_tvalid_reg <= temp_m_axis_cq_tvalid_next; end // datapath if (store_axis_int_to_output) begin m_axis_cq_tdata_reg <= m_axis_cq_tdata_int; m_axis_cq_tkeep_reg <= m_axis_cq_tkeep_int; m_axis_cq_tlast_reg <= m_axis_cq_tlast_int; m_axis_cq_tuser_reg <= m_axis_cq_tuser_int; end else if (store_axis_cq_temp_to_output) begin m_axis_cq_tdata_reg <= temp_m_axis_cq_tdata_reg; m_axis_cq_tkeep_reg <= temp_m_axis_cq_tkeep_reg; m_axis_cq_tlast_reg <= temp_m_axis_cq_tlast_reg; m_axis_cq_tuser_reg <= temp_m_axis_cq_tuser_reg; end if (store_axis_int_to_temp) begin temp_m_axis_cq_tdata_reg <= m_axis_cq_tdata_int; temp_m_axis_cq_tkeep_reg <= m_axis_cq_tkeep_int; temp_m_axis_cq_tlast_reg <= m_axis_cq_tlast_int; temp_m_axis_cq_tuser_reg <= m_axis_cq_tuser_int; end end endmodule