/* Copyright 2019, The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF CALIFORNIA OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of The Regents of the University of California. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * Transmit checksum offload module */ module tx_checksum # ( // Width of AXI stream interfaces in bits parameter DATA_WIDTH = 256, // AXI stream tkeep signal width (words per cycle) parameter KEEP_WIDTH = (DATA_WIDTH/8), // Propagate tid signal parameter ID_ENABLE = 0, // tid signal width parameter ID_WIDTH = 8, // Propagate tdest signal parameter DEST_ENABLE = 0, // tdest signal width parameter DEST_WIDTH = 8, // Propagate tuser signal parameter USER_ENABLE = 1, // tuser signal width parameter USER_WIDTH = 1, // Use checksum init value parameter USE_INIT_VALUE = 0, // Depth of data FIFO in words parameter DATA_FIFO_DEPTH = 4096, // Depth of checksum FIFO parameter CHECKSUM_FIFO_DEPTH = 64 ) ( input wire clk, input wire rst, /* * AXI input */ input wire [DATA_WIDTH-1:0] s_axis_tdata, input wire [KEEP_WIDTH-1:0] s_axis_tkeep, input wire s_axis_tvalid, output wire s_axis_tready, input wire s_axis_tlast, input wire [ID_WIDTH-1:0] s_axis_tid, input wire [DEST_WIDTH-1:0] s_axis_tdest, input wire [USER_WIDTH-1:0] s_axis_tuser, /* * AXI output */ output wire [DATA_WIDTH-1:0] m_axis_tdata, output wire [KEEP_WIDTH-1:0] m_axis_tkeep, output wire m_axis_tvalid, input wire m_axis_tready, output wire m_axis_tlast, output wire [ID_WIDTH-1:0] m_axis_tid, output wire [DEST_WIDTH-1:0] m_axis_tdest, output wire [USER_WIDTH-1:0] m_axis_tuser, /* * Control */ input wire s_axis_cmd_csum_enable, input wire [7:0] s_axis_cmd_csum_start, input wire [7:0] s_axis_cmd_csum_offset, input wire [15:0] s_axis_cmd_csum_init, input wire s_axis_cmd_valid, output wire s_axis_cmd_ready ); parameter LEVELS = $clog2(DATA_WIDTH/8); // bus width assertions initial begin if (KEEP_WIDTH * 8 != DATA_WIDTH) begin $error("Error: AXI stream interface requires byte (8-bit) granularity (instance %m)"); $finish; end end reg transfer_in_reg = 1'b0; reg [15:0] csum_in_csum_reg = 0; reg [7:0] csum_in_offset_reg = 0; reg csum_in_enable_reg = 1'b0; reg csum_in_valid_reg = 1'b0; wire csum_in_ready; wire [15:0] csum_out_csum; wire [7:0] csum_out_offset; wire csum_out_enable; wire csum_out_valid; reg csum_out_ready = 1'b0; reg [KEEP_WIDTH-1:0] mask_reg = 0; reg first_cycle_reg = 1'b0; reg [7:0] input_offset_reg = 0; reg [DATA_WIDTH-1:0] s_axis_tdata_masked; reg frame_reg = 1'b0, frame_next; reg [15:0] csum_reg = 16'd0, csum_next; reg [7:0] csum_offset_reg = 8'd0, csum_offset_next; reg csum_enable_reg = 1'b0, csum_enable_next; reg csum_split_reg = 1'b0, csum_split_next; reg [DATA_WIDTH-1:0] sum_reg[LEVELS-2:0]; reg [LEVELS-2:0] sum_valid_reg = 0; reg [LEVELS-2:0] sum_odd_reg = 0; reg [LEVELS-2:0] sum_last_reg = 0; reg [LEVELS-2:0] sum_enable_reg = 0; reg [7:0] sum_offset_reg[LEVELS-2:0]; reg [15:0] sum_init_reg[LEVELS-2:0]; reg [LEVELS-2:0] sum_init_valid_reg = 0; reg [16+LEVELS-1:0] sum_acc_temp = 0; reg [15:0] sum_acc_reg = 0; // internal datapath reg [DATA_WIDTH-1:0] m_axis_tdata_int; reg [KEEP_WIDTH-1:0] m_axis_tkeep_int; reg m_axis_tvalid_int; reg m_axis_tready_int_reg = 1'b0; reg m_axis_tlast_int; reg [ID_WIDTH-1:0] m_axis_tid_int; reg [DEST_WIDTH-1:0] m_axis_tdest_int; reg [USER_WIDTH-1:0] m_axis_tuser_int; wire m_axis_tready_int_early; wire [DATA_WIDTH-1:0] data_in_axis_tdata; wire [KEEP_WIDTH-1:0] data_in_axis_tkeep; wire data_in_axis_tvalid; wire data_in_axis_tready; wire data_in_axis_tlast; wire [ID_WIDTH-1:0] data_in_axis_tid; wire [DEST_WIDTH-1:0] data_in_axis_tdest; wire [USER_WIDTH-1:0] data_in_axis_tuser; wire [DATA_WIDTH-1:0] data_out_axis_tdata; wire [KEEP_WIDTH-1:0] data_out_axis_tkeep; wire data_out_axis_tvalid; reg data_out_axis_tready; wire data_out_axis_tlast; wire [ID_WIDTH-1:0] data_out_axis_tid; wire [DEST_WIDTH-1:0] data_out_axis_tdest; wire [USER_WIDTH-1:0] data_out_axis_tuser; assign s_axis_tready = data_in_axis_tready && csum_in_ready && transfer_in_reg; assign s_axis_cmd_ready = csum_in_ready && !transfer_in_reg; // data FIFO assign data_in_axis_tdata = s_axis_tdata; assign data_in_axis_tkeep = s_axis_tkeep; assign data_in_axis_tvalid = s_axis_tvalid && csum_in_ready && transfer_in_reg; assign data_in_axis_tlast = s_axis_tlast; assign data_in_axis_tid = s_axis_tid; assign data_in_axis_tdest = s_axis_tdest; assign data_in_axis_tuser = s_axis_tuser; axis_fifo #( .DEPTH(DATA_FIFO_DEPTH), .DATA_WIDTH(DATA_WIDTH), .KEEP_ENABLE(1), .KEEP_WIDTH(KEEP_WIDTH), .LAST_ENABLE(1), .ID_ENABLE(ID_ENABLE), .ID_WIDTH(ID_WIDTH), .DEST_ENABLE(DEST_ENABLE), .DEST_WIDTH(DEST_WIDTH), .USER_ENABLE(USER_ENABLE), .USER_WIDTH(USER_WIDTH), .FRAME_FIFO(0) ) data_fifo ( .clk(clk), .rst(rst), // AXI input .s_axis_tdata(data_in_axis_tdata), .s_axis_tkeep(data_in_axis_tkeep), .s_axis_tvalid(data_in_axis_tvalid), .s_axis_tready(data_in_axis_tready), .s_axis_tlast(data_in_axis_tlast), .s_axis_tid(data_in_axis_tid), .s_axis_tdest(data_in_axis_tdest), .s_axis_tuser(data_in_axis_tuser), // AXI output .m_axis_tdata(data_out_axis_tdata), .m_axis_tkeep(data_out_axis_tkeep), .m_axis_tvalid(data_out_axis_tvalid), .m_axis_tready(data_out_axis_tready), .m_axis_tlast(data_out_axis_tlast), .m_axis_tid(data_out_axis_tid), .m_axis_tdest(data_out_axis_tdest), .m_axis_tuser(data_out_axis_tuser), // Status .status_overflow(), .status_bad_frame(), .status_good_frame() ); // checksum FIFO axis_fifo #( .DEPTH(CHECKSUM_FIFO_DEPTH), .DATA_WIDTH(16+8+1), .KEEP_ENABLE(0), .LAST_ENABLE(0), .ID_ENABLE(0), .DEST_ENABLE(0), .USER_ENABLE(0), .FRAME_FIFO(0) ) csum_fifo ( .clk(clk), .rst(rst), // AXI input .s_axis_tdata({csum_in_csum_reg, csum_in_offset_reg, csum_in_enable_reg}), .s_axis_tkeep(0), .s_axis_tvalid(csum_in_valid_reg), .s_axis_tready(csum_in_ready), .s_axis_tlast(0), .s_axis_tid(0), .s_axis_tdest(0), .s_axis_tuser(0), // AXI output .m_axis_tdata({csum_out_csum, csum_out_offset, csum_out_enable}), .m_axis_tkeep(), .m_axis_tvalid(csum_out_valid), .m_axis_tready(csum_out_ready), .m_axis_tlast(), .m_axis_tid(), .m_axis_tdest(), .m_axis_tuser(), // Status .status_overflow(), .status_bad_frame(), .status_good_frame() ); // Mask input data integer j; always @* begin for (j = 0; j < KEEP_WIDTH; j = j + 1) begin s_axis_tdata_masked[j*8 +: 8] = (s_axis_tkeep[j] && mask_reg[j]) ? s_axis_tdata[j*8 +: 8] : 8'd0; end end // Compute checksum integer i; always @(posedge clk) begin sum_valid_reg[0] <= sum_valid_reg[0] && !csum_in_ready; if (s_axis_tvalid && s_axis_tready) begin for (i = 0; i < DATA_WIDTH/8/4; i = i + 1) begin sum_reg[0][i*17 +: 17] <= {s_axis_tdata_masked[(4*i+0)*8 +: 8], s_axis_tdata_masked[(4*i+1)*8 +: 8]} + {s_axis_tdata_masked[(4*i+2)*8 +: 8], s_axis_tdata_masked[(4*i+3)*8 +: 8]}; end sum_valid_reg[0] <= 1'b1; sum_last_reg[0] <= s_axis_tlast; sum_init_valid_reg[0] <= first_cycle_reg; first_cycle_reg <= 1'b0; if (s_axis_tlast) begin transfer_in_reg <= 1'b0; end if (input_offset_reg > 0) begin if (input_offset_reg >= KEEP_WIDTH) begin mask_reg <= 0; input_offset_reg <= input_offset_reg - KEEP_WIDTH; end else begin mask_reg <= {KEEP_WIDTH{1'b1}} << input_offset_reg; input_offset_reg <= 0; end end else begin mask_reg <= {KEEP_WIDTH{1'b1}}; end end if (s_axis_cmd_valid && s_axis_cmd_ready) begin transfer_in_reg <= 1'b1; sum_odd_reg[0] <= s_axis_cmd_csum_start[0]; sum_enable_reg[0] <= s_axis_cmd_csum_enable; sum_offset_reg[0] <= s_axis_cmd_csum_offset; sum_init_reg[0] <= s_axis_cmd_csum_init; first_cycle_reg <= 1'b1; if (s_axis_cmd_csum_start >= KEEP_WIDTH) begin mask_reg <= 0; input_offset_reg <= s_axis_cmd_csum_start - KEEP_WIDTH; end else begin mask_reg <= {KEEP_WIDTH{1'b1}} << s_axis_cmd_csum_start; input_offset_reg <= 0; end end if (rst) begin transfer_in_reg <= 1'b0; sum_valid_reg[0] <= 1'b0; end end generate genvar l; for (l = 1; l < LEVELS-1; l = l + 1) begin always @(posedge clk) begin sum_valid_reg[l] <= sum_valid_reg[l] && !csum_in_ready; if (sum_valid_reg[l-1] && csum_in_ready) begin for (i = 0; i < DATA_WIDTH/8/4/2**l; i = i + 1) begin sum_reg[l][i*(17+l) +: (17+l)] <= sum_reg[l-1][(i*2+0)*(17+l-1) +: (17+l-1)] + sum_reg[l-1][(i*2+1)*(17+l-1) +: (17+l-1)]; end sum_valid_reg[l] <= 1'b1; sum_odd_reg[l] <= sum_odd_reg[l-1]; sum_last_reg[l] <= sum_last_reg[l-1]; sum_enable_reg[l] <= sum_enable_reg[l-1]; sum_offset_reg[l] <= sum_offset_reg[l-1]; sum_init_reg[l] <= sum_init_reg[l-1]; sum_init_valid_reg[l] <= sum_init_valid_reg[l-1]; end if (rst) begin sum_valid_reg[l] <= 1'b0; end end end endgenerate always @(posedge clk) begin csum_in_valid_reg <= 1'b0; if (sum_valid_reg[LEVELS-2] && csum_in_ready) begin sum_acc_temp = sum_reg[LEVELS-2][16+LEVELS-1-1:0] + (sum_init_valid_reg[LEVELS-2] && USE_INIT_VALUE ? sum_init_reg[LEVELS-2] : sum_acc_reg); sum_acc_temp = sum_acc_temp[15:0] + (sum_acc_temp >> 16); sum_acc_temp = sum_acc_temp[15:0] + sum_acc_temp[16]; if (sum_last_reg[LEVELS-2]) begin if (sum_odd_reg[LEVELS-2]) begin csum_in_csum_reg[7:0] <= ~sum_acc_temp[15:8]; csum_in_csum_reg[15:8] <= ~sum_acc_temp[7:0]; end else begin csum_in_csum_reg[7:0] <= ~sum_acc_temp[7:0]; csum_in_csum_reg[15:8] <= ~sum_acc_temp[15:8]; end csum_in_offset_reg <= sum_offset_reg[LEVELS-2]; csum_in_enable_reg <= sum_enable_reg[LEVELS-2]; csum_in_valid_reg <= 1'b1; sum_acc_reg <= 0; end else begin sum_acc_reg <= sum_acc_temp; end end if (rst) begin csum_in_valid_reg <= 1'b0; end end // Insert checksum always @* begin data_out_axis_tready = m_axis_tready_int_reg && frame_reg; csum_out_ready = 1'b0; frame_next = frame_reg; csum_next = csum_reg; csum_offset_next = csum_offset_reg; csum_enable_next = csum_enable_reg; csum_split_next = csum_split_reg; m_axis_tdata_int = data_out_axis_tdata; m_axis_tkeep_int = data_out_axis_tkeep; m_axis_tvalid_int = data_out_axis_tvalid && data_out_axis_tready; m_axis_tlast_int = data_out_axis_tlast; m_axis_tid_int = data_out_axis_tid; m_axis_tdest_int = data_out_axis_tdest; m_axis_tuser_int = data_out_axis_tuser; if (frame_reg) begin if (data_out_axis_tvalid && data_out_axis_tready) begin if (data_out_axis_tlast) begin frame_next = 1'b0; end if (csum_enable_reg) begin if (csum_offset_reg >= KEEP_WIDTH) begin csum_offset_next = csum_offset_reg - KEEP_WIDTH; end else if (csum_split_reg) begin // other byte of split checksum m_axis_tdata_int[0 +: 8] = csum_reg[7:0]; csum_enable_next = 1'b0; end else if (csum_offset_reg == KEEP_WIDTH-1) begin // split across two cycles m_axis_tdata_int[DATA_WIDTH-8 +: 8] = csum_reg[15:8]; csum_split_next = 1'b1; end else begin m_axis_tdata_int[csum_offset_reg*8 +: 8] = csum_reg[15:8]; m_axis_tdata_int[(csum_offset_reg+1)*8 +: 8] = csum_reg[7:0]; csum_enable_next = 1'b0; end end end end else begin csum_out_ready = 1'b1; csum_next = csum_out_csum; csum_offset_next = csum_out_offset; csum_enable_next = csum_out_enable; csum_split_next = 1'b0; if (csum_out_valid) begin frame_next = 1'b1; end end end always @(posedge clk) begin frame_reg <= frame_next; csum_reg <= csum_next; csum_offset_reg <= csum_offset_next; csum_enable_reg <= csum_enable_next; csum_split_reg <= csum_split_next; if (rst) begin frame_reg <= 1'b0; csum_enable_reg <= 1'b0; end end // output datapath logic reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next; reg m_axis_tlast_reg = 1'b0; reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}}; reg [DATA_WIDTH-1:0] temp_m_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] temp_m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next; reg temp_m_axis_tlast_reg = 1'b0; reg [ID_WIDTH-1:0] temp_m_axis_tid_reg = {ID_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] temp_m_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] temp_m_axis_tuser_reg = {USER_WIDTH{1'b0}}; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_axis_temp_to_output; assign m_axis_tdata = m_axis_tdata_reg; assign m_axis_tkeep = m_axis_tkeep_reg; assign m_axis_tvalid = m_axis_tvalid_reg; assign m_axis_tlast = m_axis_tlast_reg; assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}}; assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}}; assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}}; // enable ready input next cycle if output is ready or if both output registers are empty assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg); always @* begin // transfer sink ready state to source m_axis_tvalid_next = m_axis_tvalid_reg; temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_temp_to_output = 1'b0; if (m_axis_tready_int_reg) begin // input is ready if (m_axis_tready || !m_axis_tvalid_reg) begin // output is ready or currently not valid, transfer data to output m_axis_tvalid_next = m_axis_tvalid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axis_tvalid_next = m_axis_tvalid_int; store_axis_int_to_temp = 1'b1; end end else if (m_axis_tready) begin // input is not ready, but output is ready m_axis_tvalid_next = temp_m_axis_tvalid_reg; temp_m_axis_tvalid_next = 1'b0; store_axis_temp_to_output = 1'b1; end end always @(posedge clk) begin m_axis_tvalid_reg <= m_axis_tvalid_next; m_axis_tready_int_reg <= m_axis_tready_int_early; temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next; // datapath if (store_axis_int_to_output) begin m_axis_tdata_reg <= m_axis_tdata_int; m_axis_tkeep_reg <= m_axis_tkeep_int; m_axis_tlast_reg <= m_axis_tlast_int; m_axis_tid_reg <= m_axis_tid_int; m_axis_tdest_reg <= m_axis_tdest_int; m_axis_tuser_reg <= m_axis_tuser_int; end else if (store_axis_temp_to_output) begin m_axis_tdata_reg <= temp_m_axis_tdata_reg; m_axis_tkeep_reg <= temp_m_axis_tkeep_reg; m_axis_tlast_reg <= temp_m_axis_tlast_reg; m_axis_tid_reg <= temp_m_axis_tid_reg; m_axis_tdest_reg <= temp_m_axis_tdest_reg; m_axis_tuser_reg <= temp_m_axis_tuser_reg; end if (store_axis_int_to_temp) begin temp_m_axis_tdata_reg <= m_axis_tdata_int; temp_m_axis_tkeep_reg <= m_axis_tkeep_int; temp_m_axis_tlast_reg <= m_axis_tlast_int; temp_m_axis_tid_reg <= m_axis_tid_int; temp_m_axis_tdest_reg <= m_axis_tdest_int; temp_m_axis_tuser_reg <= m_axis_tuser_int; end if (rst) begin m_axis_tvalid_reg <= 1'b0; m_axis_tready_int_reg <= 1'b0; temp_m_axis_tvalid_reg <= 1'b0; end end endmodule `resetall