/* Copyright (c) 2014-2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4-Stream arbitrated multiplexer */ module axis_arb_mux # ( // Number of AXI stream inputs parameter S_COUNT = 4, // Width of AXI stream interfaces in bits parameter DATA_WIDTH = 8, // Propagate tkeep signal parameter KEEP_ENABLE = (DATA_WIDTH>8), // tkeep signal width (words per cycle) parameter KEEP_WIDTH = ((DATA_WIDTH+7)/8), // Propagate tid signal parameter ID_ENABLE = 0, // input tid signal width parameter S_ID_WIDTH = 8, // output tid signal width parameter M_ID_WIDTH = S_ID_WIDTH+$clog2(S_COUNT), // Propagate tdest signal parameter DEST_ENABLE = 0, // tdest signal width parameter DEST_WIDTH = 8, // Propagate tuser signal parameter USER_ENABLE = 1, // tuser signal width parameter USER_WIDTH = 1, // Propagate tlast signal parameter LAST_ENABLE = 1, // Update tid with routing information parameter UPDATE_TID = 0, // select round robin arbitration parameter ARB_TYPE_ROUND_ROBIN = 0, // LSB priority selection parameter ARB_LSB_HIGH_PRIORITY = 1 ) ( input wire clk, input wire rst, /* * AXI Stream inputs */ input wire [S_COUNT*DATA_WIDTH-1:0] s_axis_tdata, input wire [S_COUNT*KEEP_WIDTH-1:0] s_axis_tkeep, input wire [S_COUNT-1:0] s_axis_tvalid, output wire [S_COUNT-1:0] s_axis_tready, input wire [S_COUNT-1:0] s_axis_tlast, input wire [S_COUNT*S_ID_WIDTH-1:0] s_axis_tid, input wire [S_COUNT*DEST_WIDTH-1:0] s_axis_tdest, input wire [S_COUNT*USER_WIDTH-1:0] s_axis_tuser, /* * AXI Stream output */ output wire [DATA_WIDTH-1:0] m_axis_tdata, output wire [KEEP_WIDTH-1:0] m_axis_tkeep, output wire m_axis_tvalid, input wire m_axis_tready, output wire m_axis_tlast, output wire [M_ID_WIDTH-1:0] m_axis_tid, output wire [DEST_WIDTH-1:0] m_axis_tdest, output wire [USER_WIDTH-1:0] m_axis_tuser ); parameter CL_S_COUNT = $clog2(S_COUNT); parameter S_ID_WIDTH_INT = S_ID_WIDTH > 0 ? S_ID_WIDTH : 1; // check configuration initial begin if (UPDATE_TID) begin if (!ID_ENABLE) begin $error("Error: UPDATE_TID set requires ID_ENABLE set (instance %m)"); $finish; end if (M_ID_WIDTH < CL_S_COUNT) begin $error("Error: M_ID_WIDTH too small for port count (instance %m)"); $finish; end end end wire [S_COUNT-1:0] request; wire [S_COUNT-1:0] acknowledge; wire [S_COUNT-1:0] grant; wire grant_valid; wire [CL_S_COUNT-1:0] grant_encoded; // input registers to pipeline arbitration delay reg [S_COUNT*DATA_WIDTH-1:0] s_axis_tdata_reg = 0; reg [S_COUNT*KEEP_WIDTH-1:0] s_axis_tkeep_reg = 0; reg [S_COUNT-1:0] s_axis_tvalid_reg = 0; reg [S_COUNT-1:0] s_axis_tlast_reg = 0; reg [S_COUNT*S_ID_WIDTH-1:0] s_axis_tid_reg = 0; reg [S_COUNT*DEST_WIDTH-1:0] s_axis_tdest_reg = 0; reg [S_COUNT*USER_WIDTH-1:0] s_axis_tuser_reg = 0; // internal datapath reg [DATA_WIDTH-1:0] m_axis_tdata_int; reg [KEEP_WIDTH-1:0] m_axis_tkeep_int; reg m_axis_tvalid_int; reg m_axis_tready_int_reg = 1'b0; reg m_axis_tlast_int; reg [M_ID_WIDTH-1:0] m_axis_tid_int; reg [DEST_WIDTH-1:0] m_axis_tdest_int; reg [USER_WIDTH-1:0] m_axis_tuser_int; wire m_axis_tready_int_early; assign s_axis_tready = ~s_axis_tvalid_reg | ({S_COUNT{m_axis_tready_int_reg}} & grant); // mux for incoming packet wire [DATA_WIDTH-1:0] current_s_tdata = s_axis_tdata_reg[grant_encoded*DATA_WIDTH +: DATA_WIDTH]; wire [KEEP_WIDTH-1:0] current_s_tkeep = s_axis_tkeep_reg[grant_encoded*KEEP_WIDTH +: KEEP_WIDTH]; wire current_s_tvalid = s_axis_tvalid_reg[grant_encoded]; wire current_s_tready = s_axis_tready[grant_encoded]; wire current_s_tlast = s_axis_tlast_reg[grant_encoded]; wire [S_ID_WIDTH-1:0] current_s_tid = s_axis_tid_reg[grant_encoded*S_ID_WIDTH +: S_ID_WIDTH_INT]; wire [DEST_WIDTH-1:0] current_s_tdest = s_axis_tdest_reg[grant_encoded*DEST_WIDTH +: DEST_WIDTH]; wire [USER_WIDTH-1:0] current_s_tuser = s_axis_tuser_reg[grant_encoded*USER_WIDTH +: USER_WIDTH]; // arbiter instance arbiter #( .PORTS(S_COUNT), .ARB_TYPE_ROUND_ROBIN(ARB_TYPE_ROUND_ROBIN), .ARB_BLOCK(1), .ARB_BLOCK_ACK(1), .ARB_LSB_HIGH_PRIORITY(ARB_LSB_HIGH_PRIORITY) ) arb_inst ( .clk(clk), .rst(rst), .request(request), .acknowledge(acknowledge), .grant(grant), .grant_valid(grant_valid), .grant_encoded(grant_encoded) ); assign request = (s_axis_tvalid_reg & ~grant) | (s_axis_tvalid & grant); assign acknowledge = grant & s_axis_tvalid_reg & {S_COUNT{m_axis_tready_int_reg}} & (LAST_ENABLE ? s_axis_tlast_reg : {S_COUNT{1'b1}}); always @* begin // pass through selected packet data m_axis_tdata_int = current_s_tdata; m_axis_tkeep_int = current_s_tkeep; m_axis_tvalid_int = current_s_tvalid && m_axis_tready_int_reg && grant_valid; m_axis_tlast_int = current_s_tlast; m_axis_tid_int = current_s_tid; if (UPDATE_TID && S_COUNT > 1) begin m_axis_tid_int[M_ID_WIDTH-1:M_ID_WIDTH-CL_S_COUNT] = grant_encoded; end m_axis_tdest_int = current_s_tdest; m_axis_tuser_int = current_s_tuser; end integer i; always @(posedge clk) begin // register inputs for (i = 0; i < S_COUNT; i = i + 1) begin if (s_axis_tready[i]) begin s_axis_tdata_reg[i*DATA_WIDTH +: DATA_WIDTH] <= s_axis_tdata[i*DATA_WIDTH +: DATA_WIDTH]; s_axis_tkeep_reg[i*KEEP_WIDTH +: KEEP_WIDTH] <= s_axis_tkeep[i*KEEP_WIDTH +: KEEP_WIDTH]; s_axis_tvalid_reg[i] <= s_axis_tvalid[i]; s_axis_tlast_reg[i] <= s_axis_tlast[i]; s_axis_tid_reg[i*S_ID_WIDTH +: S_ID_WIDTH_INT] <= s_axis_tid[i*S_ID_WIDTH +: S_ID_WIDTH_INT]; s_axis_tdest_reg[i*DEST_WIDTH +: DEST_WIDTH] <= s_axis_tdest[i*DEST_WIDTH +: DEST_WIDTH]; s_axis_tuser_reg[i*USER_WIDTH +: USER_WIDTH] <= s_axis_tuser[i*USER_WIDTH +: USER_WIDTH]; end end if (rst) begin s_axis_tvalid_reg <= 0; end end // output datapath logic reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next; reg m_axis_tlast_reg = 1'b0; reg [M_ID_WIDTH-1:0] m_axis_tid_reg = {M_ID_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}}; reg [DATA_WIDTH-1:0] temp_m_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] temp_m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next; reg temp_m_axis_tlast_reg = 1'b0; reg [M_ID_WIDTH-1:0] temp_m_axis_tid_reg = {M_ID_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] temp_m_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] temp_m_axis_tuser_reg = {USER_WIDTH{1'b0}}; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_axis_temp_to_output; assign m_axis_tdata = m_axis_tdata_reg; assign m_axis_tkeep = KEEP_ENABLE ? m_axis_tkeep_reg : {KEEP_WIDTH{1'b1}}; assign m_axis_tvalid = m_axis_tvalid_reg; assign m_axis_tlast = LAST_ENABLE ? m_axis_tlast_reg : 1'b1; assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {M_ID_WIDTH{1'b0}}; assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}}; assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}}; // enable ready input next cycle if output is ready or if both output registers are empty assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg); always @* begin // transfer sink ready state to source m_axis_tvalid_next = m_axis_tvalid_reg; temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_temp_to_output = 1'b0; if (m_axis_tready_int_reg) begin // input is ready if (m_axis_tready || !m_axis_tvalid_reg) begin // output is ready or currently not valid, transfer data to output m_axis_tvalid_next = m_axis_tvalid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axis_tvalid_next = m_axis_tvalid_int; store_axis_int_to_temp = 1'b1; end end else if (m_axis_tready) begin // input is not ready, but output is ready m_axis_tvalid_next = temp_m_axis_tvalid_reg; temp_m_axis_tvalid_next = 1'b0; store_axis_temp_to_output = 1'b1; end end always @(posedge clk) begin m_axis_tvalid_reg <= m_axis_tvalid_next; m_axis_tready_int_reg <= m_axis_tready_int_early; temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next; // datapath if (store_axis_int_to_output) begin m_axis_tdata_reg <= m_axis_tdata_int; m_axis_tkeep_reg <= m_axis_tkeep_int; m_axis_tlast_reg <= m_axis_tlast_int; m_axis_tid_reg <= m_axis_tid_int; m_axis_tdest_reg <= m_axis_tdest_int; m_axis_tuser_reg <= m_axis_tuser_int; end else if (store_axis_temp_to_output) begin m_axis_tdata_reg <= temp_m_axis_tdata_reg; m_axis_tkeep_reg <= temp_m_axis_tkeep_reg; m_axis_tlast_reg <= temp_m_axis_tlast_reg; m_axis_tid_reg <= temp_m_axis_tid_reg; m_axis_tdest_reg <= temp_m_axis_tdest_reg; m_axis_tuser_reg <= temp_m_axis_tuser_reg; end if (store_axis_int_to_temp) begin temp_m_axis_tdata_reg <= m_axis_tdata_int; temp_m_axis_tkeep_reg <= m_axis_tkeep_int; temp_m_axis_tlast_reg <= m_axis_tlast_int; temp_m_axis_tid_reg <= m_axis_tid_int; temp_m_axis_tdest_reg <= m_axis_tdest_int; temp_m_axis_tuser_reg <= m_axis_tuser_int; end if (rst) begin m_axis_tvalid_reg <= 1'b0; m_axis_tready_int_reg <= 1'b0; temp_m_axis_tvalid_reg <= 1'b0; end end endmodule `resetall