/* Copyright (c) 2021 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * Statistics collector */ module stats_collect # ( // Channel count parameter COUNT = 8, // Increment width (bits) parameter INC_WIDTH = 8, // Statistics counter increment width (bits) parameter STAT_INC_WIDTH = 16, // Statistics counter ID width (bits) parameter STAT_ID_WIDTH = $clog2(COUNT), // Statistics counter update period (cycles) parameter UPDATE_PERIOD = 1024 ) ( input wire clk, input wire rst, /* * Increment inputs */ input wire [INC_WIDTH*COUNT-1:0] stat_inc, input wire [COUNT-1:0] stat_valid, /* * Statistics increment output */ output wire [STAT_INC_WIDTH-1:0] m_axis_stat_tdata, output wire [STAT_ID_WIDTH-1:0] m_axis_stat_tid, output wire m_axis_stat_tvalid, input wire m_axis_stat_tready, /* * Control inputs */ input wire update ); parameter COUNT_WIDTH = $clog2(COUNT); parameter PERIOD_COUNT_WIDTH = $clog2(UPDATE_PERIOD-1); parameter ACC_WIDTH = INC_WIDTH+COUNT_WIDTH+1; localparam [1:0] STATE_READ = 2'd0, STATE_WRITE = 2'd1; reg [1:0] state_reg = STATE_READ, state_next; reg [STAT_INC_WIDTH-1:0] m_axis_stat_tdata_reg = 0, m_axis_stat_tdata_next; reg [STAT_ID_WIDTH-1:0] m_axis_stat_tid_reg = 0, m_axis_stat_tid_next; reg m_axis_stat_tvalid_reg = 0, m_axis_stat_tvalid_next; reg [COUNT_WIDTH-1:0] count_reg = 0, count_next; reg [PERIOD_COUNT_WIDTH-1:0] update_period_reg = UPDATE_PERIOD-1, update_period_next; reg [COUNT-1:0] zero_reg = {COUNT{1'b1}}, zero_next; reg [COUNT-1:0] update_reg = {COUNT{1'b0}}, update_next; wire [ACC_WIDTH-1:0] acc_int[COUNT-1:0]; reg [COUNT-1:0] acc_clear; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) reg [STAT_INC_WIDTH-1:0] mem_reg[COUNT-1:0]; reg [STAT_INC_WIDTH-1:0] mem_rd_data_reg = 0; reg mem_rd_en; reg mem_wr_en; reg [STAT_INC_WIDTH-1:0] mem_wr_data; assign m_axis_stat_tdata = m_axis_stat_tdata_reg; assign m_axis_stat_tid = m_axis_stat_tid_reg; assign m_axis_stat_tvalid = m_axis_stat_tvalid_reg; generate genvar n; for (n = 0; n < COUNT; n = n + 1) begin reg [ACC_WIDTH-1:0] acc_reg = 0; assign acc_int[n] = acc_reg; always @(posedge clk) begin if (acc_clear[n]) begin if (stat_valid[n]) begin acc_reg <= stat_inc[n*INC_WIDTH +: INC_WIDTH]; end else begin acc_reg <= 0; end end else begin if (stat_valid[n]) begin acc_reg <= acc_reg + stat_inc[n*INC_WIDTH +: INC_WIDTH]; end end if (rst) begin acc_reg <= 0; end end end endgenerate always @* begin state_next = STATE_READ; m_axis_stat_tdata_next = m_axis_stat_tdata_reg; m_axis_stat_tid_next = m_axis_stat_tid_reg; m_axis_stat_tvalid_next = m_axis_stat_tvalid_reg && !m_axis_stat_tready; count_next = count_reg; update_period_next = update_period_reg; zero_next = zero_reg; update_next = update_reg; acc_clear = {COUNT{1'b0}}; mem_rd_en = 1'b0; mem_wr_en = 1'b0; mem_wr_data = 0; case (state_reg) STATE_READ: begin mem_rd_en = 1'b1; state_next = STATE_WRITE; end STATE_WRITE: begin; mem_wr_en = 1'b1; acc_clear[count_reg] = 1'b1; if (!m_axis_stat_tvalid_reg && update_reg[count_reg]) begin update_next[count_reg] = 1'b0; mem_wr_data = 0; if (zero_reg[count_reg]) begin m_axis_stat_tdata_next = acc_int[count_reg]; m_axis_stat_tid_next = count_reg; m_axis_stat_tvalid_next = acc_int[count_reg] != 0; end else begin m_axis_stat_tdata_next = mem_rd_data_reg + acc_int[count_reg]; m_axis_stat_tid_next = count_reg; m_axis_stat_tvalid_next = mem_rd_data_reg != 0 || acc_int[count_reg] != 0; end end else begin if (zero_reg[count_reg]) begin mem_wr_data = acc_int[count_reg]; end else begin mem_wr_data = mem_rd_data_reg + acc_int[count_reg]; end end zero_next[count_reg] = 1'b0; if (count_reg == COUNT-1) begin count_next = 0; end else begin count_next = count_reg + 1; end state_next = STATE_READ; end endcase if (update_period_reg == 0) begin update_next = {COUNT{1'b1}}; update_period_next = UPDATE_PERIOD-1; end else begin update_period_next = update_period_reg - 1; end if (update) begin update_next = {COUNT{1'b1}}; end end always @(posedge clk) begin state_reg <= state_next; m_axis_stat_tdata_reg <= m_axis_stat_tdata_next; m_axis_stat_tid_reg <= m_axis_stat_tid_next; m_axis_stat_tvalid_reg <= m_axis_stat_tvalid_next; count_reg <= count_next; update_period_reg <= update_period_next; zero_reg <= zero_next; update_reg <= update_next; if (mem_wr_en) begin mem_reg[count_reg] <= mem_wr_data; end else if (mem_rd_en) begin mem_rd_data_reg <= mem_reg[count_reg]; end if (rst) begin state_reg <= STATE_READ; m_axis_stat_tvalid_reg <= 1'b0; count_reg <= 0; update_period_reg <= UPDATE_PERIOD-1; zero_reg <= {COUNT{1'b1}}; update_reg <= {COUNT{1'b0}}; end end endmodule `resetall