/* Copyright (c) 2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4 crossbar (read) */ module axi_crossbar_rd # ( // Number of AXI inputs (slave interfaces) parameter S_COUNT = 4, // Number of AXI outputs (master interfaces) parameter M_COUNT = 4, // Width of data bus in bits parameter DATA_WIDTH = 32, // Width of address bus in bits parameter ADDR_WIDTH = 32, // Width of wstrb (width of data bus in words) parameter STRB_WIDTH = (DATA_WIDTH/8), // Input ID field width (from AXI masters) parameter S_ID_WIDTH = 8, // Output ID field width (towards AXI slaves) // Additional bits required for response routing parameter M_ID_WIDTH = S_ID_WIDTH+$clog2(S_COUNT), // Propagate aruser signal parameter ARUSER_ENABLE = 0, // Width of aruser signal parameter ARUSER_WIDTH = 1, // Propagate ruser signal parameter RUSER_ENABLE = 0, // Width of ruser signal parameter RUSER_WIDTH = 1, // Number of concurrent unique IDs for each slave interface // S_COUNT concatenated fields of 32 bits parameter S_THREADS = {S_COUNT{32'd2}}, // Number of concurrent operations for each slave interface // S_COUNT concatenated fields of 32 bits parameter S_ACCEPT = {S_COUNT{32'd16}}, // Number of regions per master interface parameter M_REGIONS = 1, // Master interface base addresses // M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_WIDTH bits parameter M_BASE_ADDR = {32'h03000000, 32'h02000000, 32'h01000000, 32'h00000000}, // Master interface address widths // M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits parameter M_ADDR_WIDTH = {M_COUNT{{M_REGIONS{32'd24}}}}, // Read connections between interfaces // M_COUNT concatenated fields of S_COUNT bits parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}}, // Number of concurrent operations for each master interface // M_COUNT concatenated fields of 32 bits parameter M_ISSUE = {M_COUNT{32'd4}}, // Secure master (fail operations based on awprot/arprot) // M_COUNT bits parameter M_SECURE = {M_COUNT{1'b0}}, // Slave interface AR channel register type (input) // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter S_AR_REG_TYPE = {S_COUNT{2'd0}}, // Slave interface R channel register type (output) // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter S_R_REG_TYPE = {S_COUNT{2'd2}}, // Master interface AR channel register type (output) // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter M_AR_REG_TYPE = {M_COUNT{2'd1}}, // Master interface R channel register type (input) // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter M_R_REG_TYPE = {M_COUNT{2'd0}} ) ( input wire clk, input wire rst, /* * AXI slave interfaces */ input wire [S_COUNT*S_ID_WIDTH-1:0] s_axi_arid, input wire [S_COUNT*ADDR_WIDTH-1:0] s_axi_araddr, input wire [S_COUNT*8-1:0] s_axi_arlen, input wire [S_COUNT*3-1:0] s_axi_arsize, input wire [S_COUNT*2-1:0] s_axi_arburst, input wire [S_COUNT-1:0] s_axi_arlock, input wire [S_COUNT*4-1:0] s_axi_arcache, input wire [S_COUNT*3-1:0] s_axi_arprot, input wire [S_COUNT*4-1:0] s_axi_arqos, input wire [S_COUNT*ARUSER_WIDTH-1:0] s_axi_aruser, input wire [S_COUNT-1:0] s_axi_arvalid, output wire [S_COUNT-1:0] s_axi_arready, output wire [S_COUNT*S_ID_WIDTH-1:0] s_axi_rid, output wire [S_COUNT*DATA_WIDTH-1:0] s_axi_rdata, output wire [S_COUNT*2-1:0] s_axi_rresp, output wire [S_COUNT-1:0] s_axi_rlast, output wire [S_COUNT*RUSER_WIDTH-1:0] s_axi_ruser, output wire [S_COUNT-1:0] s_axi_rvalid, input wire [S_COUNT-1:0] s_axi_rready, /* * AXI master interfaces */ output wire [M_COUNT*M_ID_WIDTH-1:0] m_axi_arid, output wire [M_COUNT*ADDR_WIDTH-1:0] m_axi_araddr, output wire [M_COUNT*8-1:0] m_axi_arlen, output wire [M_COUNT*3-1:0] m_axi_arsize, output wire [M_COUNT*2-1:0] m_axi_arburst, output wire [M_COUNT-1:0] m_axi_arlock, output wire [M_COUNT*4-1:0] m_axi_arcache, output wire [M_COUNT*3-1:0] m_axi_arprot, output wire [M_COUNT*4-1:0] m_axi_arqos, output wire [M_COUNT*4-1:0] m_axi_arregion, output wire [M_COUNT*ARUSER_WIDTH-1:0] m_axi_aruser, output wire [M_COUNT-1:0] m_axi_arvalid, input wire [M_COUNT-1:0] m_axi_arready, input wire [M_COUNT*M_ID_WIDTH-1:0] m_axi_rid, input wire [M_COUNT*DATA_WIDTH-1:0] m_axi_rdata, input wire [M_COUNT*2-1:0] m_axi_rresp, input wire [M_COUNT-1:0] m_axi_rlast, input wire [M_COUNT*RUSER_WIDTH-1:0] m_axi_ruser, input wire [M_COUNT-1:0] m_axi_rvalid, output wire [M_COUNT-1:0] m_axi_rready ); parameter CL_S_COUNT = $clog2(S_COUNT); parameter CL_M_COUNT = $clog2(M_COUNT); parameter M_COUNT_P1 = M_COUNT+1; parameter CL_M_COUNT_P1 = $clog2(M_COUNT_P1); integer i; // check configuration initial begin if (M_ID_WIDTH < S_ID_WIDTH+$clog2(S_COUNT)) begin $error("Error: M_ID_WIDTH must be at least $clog2(S_COUNT) larger than S_ID_WIDTH (instance %m)"); $finish; end for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin if (M_ADDR_WIDTH[i*32 +: 32] && (M_ADDR_WIDTH[i*32 +: 32] < 12 || M_ADDR_WIDTH[i*32 +: 32] > ADDR_WIDTH)) begin $error("Error: value out of range (instance %m)"); $finish; end end end wire [S_COUNT*S_ID_WIDTH-1:0] int_s_axi_arid; wire [S_COUNT*ADDR_WIDTH-1:0] int_s_axi_araddr; wire [S_COUNT*8-1:0] int_s_axi_arlen; wire [S_COUNT*3-1:0] int_s_axi_arsize; wire [S_COUNT*2-1:0] int_s_axi_arburst; wire [S_COUNT-1:0] int_s_axi_arlock; wire [S_COUNT*4-1:0] int_s_axi_arcache; wire [S_COUNT*3-1:0] int_s_axi_arprot; wire [S_COUNT*4-1:0] int_s_axi_arqos; wire [S_COUNT*4-1:0] int_s_axi_arregion; wire [S_COUNT*ARUSER_WIDTH-1:0] int_s_axi_aruser; wire [S_COUNT-1:0] int_s_axi_arvalid; wire [S_COUNT-1:0] int_s_axi_arready; wire [S_COUNT*M_COUNT-1:0] int_axi_arvalid; wire [M_COUNT*S_COUNT-1:0] int_axi_arready; wire [M_COUNT*M_ID_WIDTH-1:0] int_m_axi_rid; wire [M_COUNT*DATA_WIDTH-1:0] int_m_axi_rdata; wire [M_COUNT*2-1:0] int_m_axi_rresp; wire [M_COUNT-1:0] int_m_axi_rlast; wire [M_COUNT*RUSER_WIDTH-1:0] int_m_axi_ruser; wire [M_COUNT-1:0] int_m_axi_rvalid; wire [M_COUNT-1:0] int_m_axi_rready; wire [M_COUNT*S_COUNT-1:0] int_axi_rvalid; wire [S_COUNT*M_COUNT-1:0] int_axi_rready; generate genvar m, n; for (m = 0; m < S_COUNT; m = m + 1) begin : s_ifaces // address decode and admission control wire [CL_M_COUNT-1:0] a_select; wire m_axi_avalid; wire m_axi_aready; wire m_rc_decerr; wire m_rc_valid; wire m_rc_ready; wire [S_ID_WIDTH-1:0] s_cpl_id; wire s_cpl_valid; axi_crossbar_addr #( .S(m), .S_COUNT(S_COUNT), .M_COUNT(M_COUNT), .ADDR_WIDTH(ADDR_WIDTH), .ID_WIDTH(S_ID_WIDTH), .S_THREADS(S_THREADS[m*32 +: 32]), .S_ACCEPT(S_ACCEPT[m*32 +: 32]), .M_REGIONS(M_REGIONS), .M_BASE_ADDR(M_BASE_ADDR), .M_ADDR_WIDTH(M_ADDR_WIDTH), .M_CONNECT(M_CONNECT), .M_SECURE(M_SECURE), .WC_OUTPUT(0) ) addr_inst ( .clk(clk), .rst(rst), /* * Address input */ .s_axi_aid(int_s_axi_arid[m*S_ID_WIDTH +: S_ID_WIDTH]), .s_axi_aaddr(int_s_axi_araddr[m*ADDR_WIDTH +: ADDR_WIDTH]), .s_axi_aprot(int_s_axi_arprot[m*3 +: 3]), .s_axi_aqos(int_s_axi_arqos[m*4 +: 4]), .s_axi_avalid(int_s_axi_arvalid[m]), .s_axi_aready(int_s_axi_arready[m]), /* * Address output */ .m_axi_aregion(int_s_axi_arregion[m*4 +: 4]), .m_select(a_select), .m_axi_avalid(m_axi_avalid), .m_axi_aready(m_axi_aready), /* * Write command output */ .m_wc_select(), .m_wc_decerr(), .m_wc_valid(), .m_wc_ready(1'b1), /* * Response command output */ .m_rc_decerr(m_rc_decerr), .m_rc_valid(m_rc_valid), .m_rc_ready(m_rc_ready), /* * Completion input */ .s_cpl_id(s_cpl_id), .s_cpl_valid(s_cpl_valid) ); assign int_axi_arvalid[m*M_COUNT +: M_COUNT] = m_axi_avalid << a_select; assign m_axi_aready = int_axi_arready[a_select*S_COUNT+m]; // decode error handling reg [S_ID_WIDTH-1:0] decerr_m_axi_rid_reg = {S_ID_WIDTH{1'b0}}, decerr_m_axi_rid_next; reg decerr_m_axi_rlast_reg = 1'b0, decerr_m_axi_rlast_next; reg decerr_m_axi_rvalid_reg = 1'b0, decerr_m_axi_rvalid_next; wire decerr_m_axi_rready; reg [7:0] decerr_len_reg = 8'd0, decerr_len_next; assign m_rc_ready = !decerr_m_axi_rvalid_reg; always @* begin decerr_len_next = decerr_len_reg; decerr_m_axi_rid_next = decerr_m_axi_rid_reg; decerr_m_axi_rlast_next = decerr_m_axi_rlast_reg; decerr_m_axi_rvalid_next = decerr_m_axi_rvalid_reg; if (decerr_m_axi_rvalid_reg) begin if (decerr_m_axi_rready) begin if (decerr_len_reg > 0) begin decerr_len_next = decerr_len_reg-1; decerr_m_axi_rlast_next = (decerr_len_next == 0); decerr_m_axi_rvalid_next = 1'b1; end else begin decerr_m_axi_rvalid_next = 1'b0; end end end else if (m_rc_valid && m_rc_ready) begin decerr_len_next = int_s_axi_arlen[m*8 +: 8]; decerr_m_axi_rid_next = int_s_axi_arid[m*S_ID_WIDTH +: S_ID_WIDTH]; decerr_m_axi_rlast_next = (decerr_len_next == 0); decerr_m_axi_rvalid_next = 1'b1; end end always @(posedge clk) begin if (rst) begin decerr_m_axi_rvalid_reg <= 1'b0; end else begin decerr_m_axi_rvalid_reg <= decerr_m_axi_rvalid_next; end decerr_m_axi_rid_reg <= decerr_m_axi_rid_next; decerr_m_axi_rlast_reg <= decerr_m_axi_rlast_next; decerr_len_reg <= decerr_len_next; end // read response arbitration wire [M_COUNT_P1-1:0] r_request; wire [M_COUNT_P1-1:0] r_acknowledge; wire [M_COUNT_P1-1:0] r_grant; wire r_grant_valid; wire [CL_M_COUNT_P1-1:0] r_grant_encoded; arbiter #( .PORTS(M_COUNT_P1), .TYPE("ROUND_ROBIN"), .BLOCK("ACKNOWLEDGE"), .LSB_PRIORITY("HIGH") ) r_arb_inst ( .clk(clk), .rst(rst), .request(r_request), .acknowledge(r_acknowledge), .grant(r_grant), .grant_valid(r_grant_valid), .grant_encoded(r_grant_encoded) ); // read response mux wire [S_ID_WIDTH-1:0] m_axi_rid_mux = {decerr_m_axi_rid_reg, int_m_axi_rid} >> r_grant_encoded*M_ID_WIDTH; wire [DATA_WIDTH-1:0] m_axi_rdata_mux = {{DATA_WIDTH{1'b0}}, int_m_axi_rdata} >> r_grant_encoded*DATA_WIDTH; wire [1:0] m_axi_rresp_mux = {2'b11, int_m_axi_rresp} >> r_grant_encoded*2; wire m_axi_rlast_mux = {decerr_m_axi_rlast_reg, int_m_axi_rlast} >> r_grant_encoded; wire [RUSER_WIDTH-1:0] m_axi_ruser_mux = {{RUSER_WIDTH{1'b0}}, int_m_axi_ruser} >> r_grant_encoded*RUSER_WIDTH; wire m_axi_rvalid_mux = ({decerr_m_axi_rvalid_reg, int_m_axi_rvalid} >> r_grant_encoded) & r_grant_valid; wire m_axi_rready_mux; assign int_axi_rready[m*M_COUNT +: M_COUNT] = (r_grant_valid && m_axi_rready_mux) << r_grant_encoded; assign decerr_m_axi_rready = (r_grant_valid && m_axi_rready_mux) && (r_grant_encoded == M_COUNT_P1-1); for (n = 0; n < M_COUNT; n = n + 1) begin assign r_request[n] = int_axi_rvalid[n*S_COUNT+m] && !r_grant[n]; assign r_acknowledge[n] = r_grant[n] && int_axi_rvalid[n*S_COUNT+m] && m_axi_rlast_mux && m_axi_rready_mux; end assign r_request[M_COUNT_P1-1] = decerr_m_axi_rvalid_reg && !r_grant[M_COUNT_P1-1]; assign r_acknowledge[M_COUNT_P1-1] = r_grant[M_COUNT_P1-1] && decerr_m_axi_rvalid_reg && decerr_m_axi_rlast_reg && m_axi_rready_mux; assign s_cpl_id = m_axi_rid_mux; assign s_cpl_valid = m_axi_rvalid_mux && m_axi_rready_mux && m_axi_rlast_mux; // S side register axi_register_rd #( .DATA_WIDTH(DATA_WIDTH), .ADDR_WIDTH(ADDR_WIDTH), .STRB_WIDTH(STRB_WIDTH), .ID_WIDTH(S_ID_WIDTH), .ARUSER_ENABLE(ARUSER_ENABLE), .ARUSER_WIDTH(ARUSER_WIDTH), .RUSER_ENABLE(RUSER_ENABLE), .RUSER_WIDTH(RUSER_WIDTH), .AR_REG_TYPE(S_AR_REG_TYPE), .R_REG_TYPE(S_R_REG_TYPE) ) reg_inst ( .clk(clk), .rst(rst), .s_axi_arid(s_axi_arid[m*S_ID_WIDTH +: S_ID_WIDTH]), .s_axi_araddr(s_axi_araddr[m*ADDR_WIDTH +: ADDR_WIDTH]), .s_axi_arlen(s_axi_arlen[m*8 +: 8]), .s_axi_arsize(s_axi_arsize[m*3 +: 3]), .s_axi_arburst(s_axi_arburst[m*2 +: 2]), .s_axi_arlock(s_axi_arlock[m]), .s_axi_arcache(s_axi_arcache[m*4 +: 4]), .s_axi_arprot(s_axi_arprot[m*3 +: 3]), .s_axi_arqos(s_axi_arqos[m*4 +: 4]), .s_axi_arregion(4'd0), .s_axi_aruser(s_axi_aruser[m*ARUSER_WIDTH +: ARUSER_WIDTH]), .s_axi_arvalid(s_axi_arvalid[m]), .s_axi_arready(s_axi_arready[m]), .s_axi_rid(s_axi_rid[m*S_ID_WIDTH +: S_ID_WIDTH]), .s_axi_rdata(s_axi_rdata[m*DATA_WIDTH +: DATA_WIDTH]), .s_axi_rresp(s_axi_rresp[m*2 +: 2]), .s_axi_rlast(s_axi_rlast[m]), .s_axi_ruser(s_axi_ruser[m*RUSER_WIDTH +: RUSER_WIDTH]), .s_axi_rvalid(s_axi_rvalid[m]), .s_axi_rready(s_axi_rready[m]), .m_axi_arid(int_s_axi_arid[m*S_ID_WIDTH +: S_ID_WIDTH]), .m_axi_araddr(int_s_axi_araddr[m*ADDR_WIDTH +: ADDR_WIDTH]), .m_axi_arlen(int_s_axi_arlen[m*8 +: 8]), .m_axi_arsize(int_s_axi_arsize[m*3 +: 3]), .m_axi_arburst(int_s_axi_arburst[m*2 +: 2]), .m_axi_arlock(int_s_axi_arlock[m]), .m_axi_arcache(int_s_axi_arcache[m*4 +: 4]), .m_axi_arprot(int_s_axi_arprot[m*3 +: 3]), .m_axi_arqos(int_s_axi_arqos[m*4 +: 4]), .m_axi_arregion(), .m_axi_aruser(int_s_axi_aruser[m*ARUSER_WIDTH +: ARUSER_WIDTH]), .m_axi_arvalid(int_s_axi_arvalid[m]), .m_axi_arready(int_s_axi_arready[m]), .m_axi_rid(m_axi_rid_mux), .m_axi_rdata(m_axi_rdata_mux), .m_axi_rresp(m_axi_rresp_mux), .m_axi_rlast(m_axi_rlast_mux), .m_axi_ruser(m_axi_ruser_mux), .m_axi_rvalid(m_axi_rvalid_mux), .m_axi_rready(m_axi_rready_mux) ); end // s_ifaces for (n = 0; n < M_COUNT; n = n + 1) begin : m_ifaces // in-flight transaction count wire trans_start; wire trans_complete; reg [$clog2(M_ISSUE[n*32 +: 32]+1)-1:0] trans_count_reg = 0; wire trans_limit = trans_count_reg >= M_ISSUE[n*32 +: 32] && !trans_complete; always @(posedge clk) begin if (rst) begin trans_count_reg <= 0; end else begin if (trans_start && !trans_complete) begin trans_count_reg <= trans_count_reg + 1; end else if (!trans_start && trans_complete) begin trans_count_reg <= trans_count_reg - 1; end end end // address arbitration wire [S_COUNT-1:0] a_request; wire [S_COUNT-1:0] a_acknowledge; wire [S_COUNT-1:0] a_grant; wire a_grant_valid; wire [CL_S_COUNT-1:0] a_grant_encoded; arbiter #( .PORTS(S_COUNT), .TYPE("ROUND_ROBIN"), .BLOCK("ACKNOWLEDGE"), .LSB_PRIORITY("HIGH") ) a_arb_inst ( .clk(clk), .rst(rst), .request(a_request), .acknowledge(a_acknowledge), .grant(a_grant), .grant_valid(a_grant_valid), .grant_encoded(a_grant_encoded) ); // address mux wire [M_ID_WIDTH-1:0] s_axi_arid_mux = int_s_axi_arid[a_grant_encoded*S_ID_WIDTH +: S_ID_WIDTH] | (a_grant_encoded << S_ID_WIDTH); wire [ADDR_WIDTH-1:0] s_axi_araddr_mux = int_s_axi_araddr[a_grant_encoded*ADDR_WIDTH +: ADDR_WIDTH]; wire [7:0] s_axi_arlen_mux = int_s_axi_arlen[a_grant_encoded*8 +: 8]; wire [2:0] s_axi_arsize_mux = int_s_axi_arsize[a_grant_encoded*3 +: 3]; wire [1:0] s_axi_arburst_mux = int_s_axi_arburst[a_grant_encoded*2 +: 2]; wire s_axi_arlock_mux = int_s_axi_arlock[a_grant_encoded]; wire [3:0] s_axi_arcache_mux = int_s_axi_arcache[a_grant_encoded*4 +: 4]; wire [2:0] s_axi_arprot_mux = int_s_axi_arprot[a_grant_encoded*3 +: 3]; wire [3:0] s_axi_arqos_mux = int_s_axi_arqos[a_grant_encoded*4 +: 4]; wire [3:0] s_axi_arregion_mux = int_s_axi_arregion[a_grant_encoded*4 +: 4]; wire [ARUSER_WIDTH-1:0] s_axi_aruser_mux = int_s_axi_aruser[a_grant_encoded*ARUSER_WIDTH +: ARUSER_WIDTH]; wire s_axi_arvalid_mux = int_axi_arvalid[a_grant_encoded*M_COUNT+n] && a_grant_valid; wire s_axi_arready_mux; assign int_axi_arready[n*S_COUNT +: S_COUNT] = (a_grant_valid && s_axi_arready_mux) << a_grant_encoded; for (m = 0; m < S_COUNT; m = m + 1) begin assign a_request[m] = int_axi_arvalid[m*M_COUNT+n] && !a_grant[m] && !trans_limit; assign a_acknowledge[m] = a_grant[m] && int_axi_arvalid[m*M_COUNT+n] && s_axi_arready_mux; end assign trans_start = s_axi_arvalid_mux && s_axi_arready_mux && a_grant_valid; // read response forwarding wire [CL_S_COUNT-1:0] r_select = m_axi_rid[n*M_ID_WIDTH +: M_ID_WIDTH] >> S_ID_WIDTH; assign int_axi_rvalid[n*S_COUNT +: S_COUNT] = int_m_axi_rvalid[n] << r_select; assign int_m_axi_rready[n] = int_axi_rready[r_select*M_COUNT+n]; assign trans_complete = int_m_axi_rvalid[n] && int_m_axi_rready[n] && int_m_axi_rlast[n]; // M side register axi_register_rd #( .DATA_WIDTH(DATA_WIDTH), .ADDR_WIDTH(ADDR_WIDTH), .STRB_WIDTH(STRB_WIDTH), .ID_WIDTH(M_ID_WIDTH), .ARUSER_ENABLE(ARUSER_ENABLE), .ARUSER_WIDTH(ARUSER_WIDTH), .RUSER_ENABLE(RUSER_ENABLE), .RUSER_WIDTH(RUSER_WIDTH), .AR_REG_TYPE(M_AR_REG_TYPE), .R_REG_TYPE(M_R_REG_TYPE) ) reg_inst ( .clk(clk), .rst(rst), .s_axi_arid(s_axi_arid_mux), .s_axi_araddr(s_axi_araddr_mux), .s_axi_arlen(s_axi_arlen_mux), .s_axi_arsize(s_axi_arsize_mux), .s_axi_arburst(s_axi_arburst_mux), .s_axi_arlock(s_axi_arlock_mux), .s_axi_arcache(s_axi_arcache_mux), .s_axi_arprot(s_axi_arprot_mux), .s_axi_arqos(s_axi_arqos_mux), .s_axi_arregion(s_axi_arregion_mux), .s_axi_aruser(s_axi_aruser_mux), .s_axi_arvalid(s_axi_arvalid_mux), .s_axi_arready(s_axi_arready_mux), .s_axi_rid(int_m_axi_rid[n*M_ID_WIDTH +: M_ID_WIDTH]), .s_axi_rdata(int_m_axi_rdata[n*DATA_WIDTH +: DATA_WIDTH]), .s_axi_rresp(int_m_axi_rresp[n*2 +: 2]), .s_axi_rlast(int_m_axi_rlast[n]), .s_axi_ruser(int_m_axi_ruser[n*RUSER_WIDTH +: RUSER_WIDTH]), .s_axi_rvalid(int_m_axi_rvalid[n]), .s_axi_rready(int_m_axi_rready[n]), .m_axi_arid(m_axi_arid[n*M_ID_WIDTH +: M_ID_WIDTH]), .m_axi_araddr(m_axi_araddr[n*ADDR_WIDTH +: ADDR_WIDTH]), .m_axi_arlen(m_axi_arlen[n*8 +: 8]), .m_axi_arsize(m_axi_arsize[n*3 +: 3]), .m_axi_arburst(m_axi_arburst[n*2 +: 2]), .m_axi_arlock(m_axi_arlock[n]), .m_axi_arcache(m_axi_arcache[n*4 +: 4]), .m_axi_arprot(m_axi_arprot[n*3 +: 3]), .m_axi_arqos(m_axi_arqos[n*4 +: 4]), .m_axi_arregion(m_axi_arregion[n*4 +: 4]), .m_axi_aruser(m_axi_aruser[n*ARUSER_WIDTH +: ARUSER_WIDTH]), .m_axi_arvalid(m_axi_arvalid[n]), .m_axi_arready(m_axi_arready[n]), .m_axi_rid(m_axi_rid[n*M_ID_WIDTH +: M_ID_WIDTH]), .m_axi_rdata(m_axi_rdata[n*DATA_WIDTH +: DATA_WIDTH]), .m_axi_rresp(m_axi_rresp[n*2 +: 2]), .m_axi_rlast(m_axi_rlast[n]), .m_axi_ruser(m_axi_ruser[n*RUSER_WIDTH +: RUSER_WIDTH]), .m_axi_rvalid(m_axi_rvalid[n]), .m_axi_rready(m_axi_rready[n]) ); end // m_ifaces endgenerate endmodule