/* Copyright (c) 2013-2023 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4-Stream FIFO */ module axis_fifo # ( // FIFO depth in words // KEEP_WIDTH words per cycle if KEEP_ENABLE set // Rounded up to nearest power of 2 cycles parameter DEPTH = 4096, // Width of AXI stream interfaces in bits parameter DATA_WIDTH = 8, // Propagate tkeep signal // If disabled, tkeep assumed to be 1'b1 parameter KEEP_ENABLE = (DATA_WIDTH>8), // tkeep signal width (words per cycle) parameter KEEP_WIDTH = ((DATA_WIDTH+7)/8), // Propagate tlast signal parameter LAST_ENABLE = 1, // Propagate tid signal parameter ID_ENABLE = 0, // tid signal width parameter ID_WIDTH = 8, // Propagate tdest signal parameter DEST_ENABLE = 0, // tdest signal width parameter DEST_WIDTH = 8, // Propagate tuser signal parameter USER_ENABLE = 1, // tuser signal width parameter USER_WIDTH = 1, // number of RAM pipeline registers parameter RAM_PIPELINE = 1, // use output FIFO // When set, the RAM read enable and pipeline clock enables are removed parameter OUTPUT_FIFO_ENABLE = 0, // Frame FIFO mode - operate on frames instead of cycles // When set, m_axis_tvalid will not be deasserted within a frame // Requires LAST_ENABLE set parameter FRAME_FIFO = 0, // tuser value for bad frame marker parameter USER_BAD_FRAME_VALUE = 1'b1, // tuser mask for bad frame marker parameter USER_BAD_FRAME_MASK = 1'b1, // Drop frames larger than FIFO // Requires FRAME_FIFO set parameter DROP_OVERSIZE_FRAME = FRAME_FIFO, // Drop frames marked bad // Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set parameter DROP_BAD_FRAME = 0, // Drop incoming frames when full // When set, s_axis_tready is always asserted // Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set parameter DROP_WHEN_FULL = 0, // Enable pause request input parameter PAUSE_ENABLE = 0, // Pause between frames parameter FRAME_PAUSE = FRAME_FIFO ) ( input wire clk, input wire rst, /* * AXI input */ input wire [DATA_WIDTH-1:0] s_axis_tdata, input wire [KEEP_WIDTH-1:0] s_axis_tkeep, input wire s_axis_tvalid, output wire s_axis_tready, input wire s_axis_tlast, input wire [ID_WIDTH-1:0] s_axis_tid, input wire [DEST_WIDTH-1:0] s_axis_tdest, input wire [USER_WIDTH-1:0] s_axis_tuser, /* * AXI output */ output wire [DATA_WIDTH-1:0] m_axis_tdata, output wire [KEEP_WIDTH-1:0] m_axis_tkeep, output wire m_axis_tvalid, input wire m_axis_tready, output wire m_axis_tlast, output wire [ID_WIDTH-1:0] m_axis_tid, output wire [DEST_WIDTH-1:0] m_axis_tdest, output wire [USER_WIDTH-1:0] m_axis_tuser, /* * Pause */ input wire pause_req, output wire pause_ack, /* * Status */ output wire [$clog2(DEPTH):0] status_depth, output wire [$clog2(DEPTH):0] status_depth_commit, output wire status_overflow, output wire status_bad_frame, output wire status_good_frame ); parameter ADDR_WIDTH = (KEEP_ENABLE && KEEP_WIDTH > 1) ? $clog2(DEPTH/KEEP_WIDTH) : $clog2(DEPTH); parameter OUTPUT_FIFO_ADDR_WIDTH = RAM_PIPELINE < 2 ? 3 : $clog2(RAM_PIPELINE*2+7); // check configuration initial begin if (FRAME_FIFO && !LAST_ENABLE) begin $error("Error: FRAME_FIFO set requires LAST_ENABLE set (instance %m)"); $finish; end if (DROP_OVERSIZE_FRAME && !FRAME_FIFO) begin $error("Error: DROP_OVERSIZE_FRAME set requires FRAME_FIFO set (instance %m)"); $finish; end if (DROP_BAD_FRAME && !(FRAME_FIFO && DROP_OVERSIZE_FRAME)) begin $error("Error: DROP_BAD_FRAME set requires FRAME_FIFO and DROP_OVERSIZE_FRAME set (instance %m)"); $finish; end if (DROP_WHEN_FULL && !(FRAME_FIFO && DROP_OVERSIZE_FRAME)) begin $error("Error: DROP_WHEN_FULL set requires FRAME_FIFO and DROP_OVERSIZE_FRAME set (instance %m)"); $finish; end if (DROP_BAD_FRAME && (USER_BAD_FRAME_MASK & {USER_WIDTH{1'b1}}) == 0) begin $error("Error: Invalid USER_BAD_FRAME_MASK value (instance %m)"); $finish; end end localparam KEEP_OFFSET = DATA_WIDTH; localparam LAST_OFFSET = KEEP_OFFSET + (KEEP_ENABLE ? KEEP_WIDTH : 0); localparam ID_OFFSET = LAST_OFFSET + (LAST_ENABLE ? 1 : 0); localparam DEST_OFFSET = ID_OFFSET + (ID_ENABLE ? ID_WIDTH : 0); localparam USER_OFFSET = DEST_OFFSET + (DEST_ENABLE ? DEST_WIDTH : 0); localparam WIDTH = USER_OFFSET + (USER_ENABLE ? USER_WIDTH : 0); reg [ADDR_WIDTH:0] wr_ptr_reg = {ADDR_WIDTH+1{1'b0}}; reg [ADDR_WIDTH:0] wr_ptr_commit_reg = {ADDR_WIDTH+1{1'b0}}; reg [ADDR_WIDTH:0] rd_ptr_reg = {ADDR_WIDTH+1{1'b0}}; (* ramstyle = "no_rw_check" *) reg [WIDTH-1:0] mem[(2**ADDR_WIDTH)-1:0]; reg mem_read_data_valid_reg = 1'b0; (* shreg_extract = "no" *) reg [WIDTH-1:0] m_axis_pipe_reg[RAM_PIPELINE+1-1:0]; reg [RAM_PIPELINE+1-1:0] m_axis_tvalid_pipe_reg = 0; // full when first MSB different but rest same wire full = wr_ptr_reg == (rd_ptr_reg ^ {1'b1, {ADDR_WIDTH{1'b0}}}); // empty when pointers match exactly wire empty = wr_ptr_commit_reg == rd_ptr_reg; // overflow within packet wire full_wr = wr_ptr_reg == (wr_ptr_commit_reg ^ {1'b1, {ADDR_WIDTH{1'b0}}}); reg drop_frame_reg = 1'b0; reg send_frame_reg = 1'b0; reg [ADDR_WIDTH:0] depth_reg = 0; reg [ADDR_WIDTH:0] depth_commit_reg = 0; reg overflow_reg = 1'b0; reg bad_frame_reg = 1'b0; reg good_frame_reg = 1'b0; assign s_axis_tready = FRAME_FIFO ? (!full || (full_wr && DROP_OVERSIZE_FRAME) || DROP_WHEN_FULL) : !full; wire [WIDTH-1:0] s_axis; generate assign s_axis[DATA_WIDTH-1:0] = s_axis_tdata; if (KEEP_ENABLE) assign s_axis[KEEP_OFFSET +: KEEP_WIDTH] = s_axis_tkeep; if (LAST_ENABLE) assign s_axis[LAST_OFFSET] = s_axis_tlast; if (ID_ENABLE) assign s_axis[ID_OFFSET +: ID_WIDTH] = s_axis_tid; if (DEST_ENABLE) assign s_axis[DEST_OFFSET +: DEST_WIDTH] = s_axis_tdest; if (USER_ENABLE) assign s_axis[USER_OFFSET +: USER_WIDTH] = s_axis_tuser; endgenerate wire [WIDTH-1:0] m_axis = m_axis_pipe_reg[RAM_PIPELINE+1-1]; wire m_axis_tready_pipe; wire m_axis_tvalid_pipe = m_axis_tvalid_pipe_reg[RAM_PIPELINE+1-1]; wire [DATA_WIDTH-1:0] m_axis_tdata_pipe = m_axis[DATA_WIDTH-1:0]; wire [KEEP_WIDTH-1:0] m_axis_tkeep_pipe = KEEP_ENABLE ? m_axis[KEEP_OFFSET +: KEEP_WIDTH] : {KEEP_WIDTH{1'b1}}; wire m_axis_tlast_pipe = LAST_ENABLE ? m_axis[LAST_OFFSET] : 1'b1; wire [ID_WIDTH-1:0] m_axis_tid_pipe = ID_ENABLE ? m_axis[ID_OFFSET +: ID_WIDTH] : {ID_WIDTH{1'b0}}; wire [DEST_WIDTH-1:0] m_axis_tdest_pipe = DEST_ENABLE ? m_axis[DEST_OFFSET +: DEST_WIDTH] : {DEST_WIDTH{1'b0}}; wire [USER_WIDTH-1:0] m_axis_tuser_pipe = USER_ENABLE ? m_axis[USER_OFFSET +: USER_WIDTH] : {USER_WIDTH{1'b0}}; wire m_axis_tready_out; wire m_axis_tvalid_out; wire [DATA_WIDTH-1:0] m_axis_tdata_out; wire [KEEP_WIDTH-1:0] m_axis_tkeep_out; wire m_axis_tlast_out; wire [ID_WIDTH-1:0] m_axis_tid_out; wire [DEST_WIDTH-1:0] m_axis_tdest_out; wire [USER_WIDTH-1:0] m_axis_tuser_out; wire pipe_ready; assign status_depth = (KEEP_ENABLE && KEEP_WIDTH > 1) ? {depth_reg, {$clog2(KEEP_WIDTH){1'b0}}} : depth_reg; assign status_depth_commit = (KEEP_ENABLE && KEEP_WIDTH > 1) ? {depth_commit_reg, {$clog2(KEEP_WIDTH){1'b0}}} : depth_commit_reg; assign status_overflow = overflow_reg; assign status_bad_frame = bad_frame_reg; assign status_good_frame = good_frame_reg; // Write logic always @(posedge clk) begin overflow_reg <= 1'b0; bad_frame_reg <= 1'b0; good_frame_reg <= 1'b0; if (FRAME_FIFO) begin // frame FIFO mode if (s_axis_tready && s_axis_tvalid) begin // transfer in if ((full && DROP_WHEN_FULL) || (full_wr && DROP_OVERSIZE_FRAME) || drop_frame_reg) begin // full, packet overflow, or currently dropping frame // drop frame drop_frame_reg <= 1'b1; if (s_axis_tlast) begin // end of frame, reset write pointer wr_ptr_reg <= wr_ptr_commit_reg; drop_frame_reg <= 1'b0; overflow_reg <= 1'b1; end end else begin // store it mem[wr_ptr_reg[ADDR_WIDTH-1:0]] <= s_axis; wr_ptr_reg <= wr_ptr_reg + 1; if (s_axis_tlast || (!DROP_OVERSIZE_FRAME && (full_wr || send_frame_reg))) begin // end of frame or send frame send_frame_reg <= !s_axis_tlast; if (s_axis_tlast && DROP_BAD_FRAME && USER_BAD_FRAME_MASK & ~(s_axis_tuser ^ USER_BAD_FRAME_VALUE)) begin // bad packet, reset write pointer wr_ptr_reg <= wr_ptr_commit_reg; bad_frame_reg <= 1'b1; end else begin // good packet or packet overflow, update write pointer wr_ptr_commit_reg <= wr_ptr_reg + 1; good_frame_reg <= s_axis_tlast; end end end end else if (s_axis_tvalid && full_wr && !DROP_OVERSIZE_FRAME) begin // data valid with packet overflow // update write pointer send_frame_reg <= 1'b1; wr_ptr_commit_reg <= wr_ptr_reg; end end else begin // normal FIFO mode if (s_axis_tready && s_axis_tvalid) begin // transfer in mem[wr_ptr_reg[ADDR_WIDTH-1:0]] <= s_axis; wr_ptr_reg <= wr_ptr_reg + 1; wr_ptr_commit_reg <= wr_ptr_reg + 1; end end if (rst) begin wr_ptr_reg <= {ADDR_WIDTH+1{1'b0}}; wr_ptr_commit_reg <= {ADDR_WIDTH+1{1'b0}}; drop_frame_reg <= 1'b0; send_frame_reg <= 1'b0; overflow_reg <= 1'b0; bad_frame_reg <= 1'b0; good_frame_reg <= 1'b0; end end // Status always @(posedge clk) begin depth_reg <= wr_ptr_reg - rd_ptr_reg; depth_commit_reg <= wr_ptr_commit_reg - rd_ptr_reg; end // Read logic integer j; always @(posedge clk) begin if (m_axis_tready_pipe) begin // output ready; invalidate stage m_axis_tvalid_pipe_reg[RAM_PIPELINE+1-1] <= 1'b0; end for (j = RAM_PIPELINE+1-1; j > 0; j = j - 1) begin if (m_axis_tready_pipe || ((~m_axis_tvalid_pipe_reg) >> j)) begin // output ready or bubble in pipeline; transfer down pipeline m_axis_tvalid_pipe_reg[j] <= m_axis_tvalid_pipe_reg[j-1]; m_axis_pipe_reg[j] <= m_axis_pipe_reg[j-1]; m_axis_tvalid_pipe_reg[j-1] <= 1'b0; end end if (m_axis_tready_pipe || ~m_axis_tvalid_pipe_reg) begin // output ready or bubble in pipeline; read new data from FIFO m_axis_tvalid_pipe_reg[0] <= 1'b0; m_axis_pipe_reg[0] <= mem[rd_ptr_reg[ADDR_WIDTH-1:0]]; if (!empty && pipe_ready) begin // not empty, increment pointer m_axis_tvalid_pipe_reg[0] <= 1'b1; rd_ptr_reg <= rd_ptr_reg + 1; end end if (rst) begin rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}}; m_axis_tvalid_pipe_reg <= 0; end end generate if (!OUTPUT_FIFO_ENABLE) begin assign pipe_ready = 1'b1; assign m_axis_tready_pipe = m_axis_tready_out; assign m_axis_tvalid_out = m_axis_tvalid_pipe; assign m_axis_tdata_out = m_axis_tdata_pipe; assign m_axis_tkeep_out = m_axis_tkeep_pipe; assign m_axis_tlast_out = m_axis_tlast_pipe; assign m_axis_tid_out = m_axis_tid_pipe; assign m_axis_tdest_out = m_axis_tdest_pipe; assign m_axis_tuser_out = m_axis_tuser_pipe; end else begin : output_fifo // output datapath logic reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg m_axis_tvalid_reg = 1'b0; reg m_axis_tlast_reg = 1'b0; reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}}; reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_wr_ptr_reg = 0; reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_rd_ptr_reg = 0; reg out_fifo_half_full_reg = 1'b0; wire out_fifo_full = out_fifo_wr_ptr_reg == (out_fifo_rd_ptr_reg ^ {1'b1, {OUTPUT_FIFO_ADDR_WIDTH{1'b0}}}); wire out_fifo_empty = out_fifo_wr_ptr_reg == out_fifo_rd_ptr_reg; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) reg [DATA_WIDTH-1:0] out_fifo_tdata[2**OUTPUT_FIFO_ADDR_WIDTH-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) reg [KEEP_WIDTH-1:0] out_fifo_tkeep[2**OUTPUT_FIFO_ADDR_WIDTH-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) reg out_fifo_tlast[2**OUTPUT_FIFO_ADDR_WIDTH-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) reg [ID_WIDTH-1:0] out_fifo_tid[2**OUTPUT_FIFO_ADDR_WIDTH-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) reg [DEST_WIDTH-1:0] out_fifo_tdest[2**OUTPUT_FIFO_ADDR_WIDTH-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) reg [USER_WIDTH-1:0] out_fifo_tuser[2**OUTPUT_FIFO_ADDR_WIDTH-1:0]; assign pipe_ready = !out_fifo_half_full_reg; assign m_axis_tready_pipe = 1'b1; assign m_axis_tdata_out = m_axis_tdata_reg; assign m_axis_tkeep_out = KEEP_ENABLE ? m_axis_tkeep_reg : {KEEP_WIDTH{1'b1}}; assign m_axis_tvalid_out = m_axis_tvalid_reg; assign m_axis_tlast_out = LAST_ENABLE ? m_axis_tlast_reg : 1'b1; assign m_axis_tid_out = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}}; assign m_axis_tdest_out = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}}; assign m_axis_tuser_out = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}}; always @(posedge clk) begin m_axis_tvalid_reg <= m_axis_tvalid_reg && !m_axis_tready_out; out_fifo_half_full_reg <= $unsigned(out_fifo_wr_ptr_reg - out_fifo_rd_ptr_reg) >= 2**(OUTPUT_FIFO_ADDR_WIDTH-1); if (!out_fifo_full && m_axis_tvalid_pipe) begin out_fifo_tdata[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tdata_pipe; out_fifo_tkeep[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tkeep_pipe; out_fifo_tlast[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tlast_pipe; out_fifo_tid[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tid_pipe; out_fifo_tdest[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tdest_pipe; out_fifo_tuser[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tuser_pipe; out_fifo_wr_ptr_reg <= out_fifo_wr_ptr_reg + 1; end if (!out_fifo_empty && (!m_axis_tvalid_reg || m_axis_tready_out)) begin m_axis_tdata_reg <= out_fifo_tdata[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]]; m_axis_tkeep_reg <= out_fifo_tkeep[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]]; m_axis_tvalid_reg <= 1'b1; m_axis_tlast_reg <= out_fifo_tlast[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]]; m_axis_tid_reg <= out_fifo_tid[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]]; m_axis_tdest_reg <= out_fifo_tdest[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]]; m_axis_tuser_reg <= out_fifo_tuser[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]]; out_fifo_rd_ptr_reg <= out_fifo_rd_ptr_reg + 1; end if (rst) begin out_fifo_wr_ptr_reg <= 0; out_fifo_rd_ptr_reg <= 0; m_axis_tvalid_reg <= 1'b0; end end end if (PAUSE_ENABLE) begin : pause // Pause logic reg pause_reg = 1'b0; reg pause_frame_reg = 1'b0; assign m_axis_tready_out = m_axis_tready && !pause_reg; assign m_axis_tvalid = m_axis_tvalid_out && !pause_reg; assign m_axis_tdata = m_axis_tdata_out; assign m_axis_tkeep = m_axis_tkeep_out; assign m_axis_tlast = m_axis_tlast_out; assign m_axis_tid = m_axis_tid_out; assign m_axis_tdest = m_axis_tdest_out; assign m_axis_tuser = m_axis_tuser_out; assign pause_ack = pause_reg; always @(posedge clk) begin if (FRAME_PAUSE) begin if (m_axis_tvalid && m_axis_tready) begin if (m_axis_tlast) begin pause_frame_reg <= 1'b0; pause_reg <= pause_req; end else begin pause_frame_reg <= 1'b1; end end else begin if (!pause_frame_reg) begin pause_reg <= pause_req; end end end else begin pause_reg <= pause_req; end if (rst) begin pause_frame_reg <= 1'b0; pause_reg <= 1'b0; end end end else begin assign m_axis_tready_out = m_axis_tready; assign m_axis_tvalid = m_axis_tvalid_out; assign m_axis_tdata = m_axis_tdata_out; assign m_axis_tkeep = m_axis_tkeep_out; assign m_axis_tlast = m_axis_tlast_out; assign m_axis_tid = m_axis_tid_out; assign m_axis_tdest = m_axis_tdest_out; assign m_axis_tuser = m_axis_tuser_out; assign pause_ack = 1'b0; end endgenerate endmodule `resetall