/* Copyright (c) 2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4 width adapter */ module axi_adapter_rd # ( parameter ADDR_WIDTH = 32, parameter S_DATA_WIDTH = 32, parameter S_STRB_WIDTH = (S_DATA_WIDTH/8), parameter M_DATA_WIDTH = 32, parameter M_STRB_WIDTH = (M_DATA_WIDTH/8), parameter ID_WIDTH = 8, parameter ARUSER_ENABLE = 0, parameter ARUSER_WIDTH = 1, parameter RUSER_ENABLE = 0, parameter RUSER_WIDTH = 1, parameter CONVERT_BURST = 1, parameter CONVERT_NARROW_BURST = 0, parameter FORWARD_ID = 0 ) ( input wire clk, input wire rst, /* * AXI slave interface */ input wire [ID_WIDTH-1:0] s_axi_arid, input wire [ADDR_WIDTH-1:0] s_axi_araddr, input wire [7:0] s_axi_arlen, input wire [2:0] s_axi_arsize, input wire [1:0] s_axi_arburst, input wire s_axi_arlock, input wire [3:0] s_axi_arcache, input wire [2:0] s_axi_arprot, input wire [3:0] s_axi_arqos, input wire [3:0] s_axi_arregion, input wire [ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, output wire [ID_WIDTH-1:0] s_axi_rid, output wire [S_DATA_WIDTH-1:0] s_axi_rdata, output wire [1:0] s_axi_rresp, output wire s_axi_rlast, output wire [RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, /* * AXI master interface */ output wire [ID_WIDTH-1:0] m_axi_arid, output wire [ADDR_WIDTH-1:0] m_axi_araddr, output wire [7:0] m_axi_arlen, output wire [2:0] m_axi_arsize, output wire [1:0] m_axi_arburst, output wire m_axi_arlock, output wire [3:0] m_axi_arcache, output wire [2:0] m_axi_arprot, output wire [3:0] m_axi_arqos, output wire [3:0] m_axi_arregion, output wire [ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, input wire [ID_WIDTH-1:0] m_axi_rid, input wire [M_DATA_WIDTH-1:0] m_axi_rdata, input wire [1:0] m_axi_rresp, input wire m_axi_rlast, input wire [RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready ); parameter S_ADDR_BIT_OFFSET = $clog2(S_STRB_WIDTH); parameter M_ADDR_BIT_OFFSET = $clog2(M_STRB_WIDTH); parameter S_WORD_WIDTH = S_STRB_WIDTH; parameter M_WORD_WIDTH = M_STRB_WIDTH; parameter S_WORD_SIZE = S_DATA_WIDTH/S_WORD_WIDTH; parameter M_WORD_SIZE = M_DATA_WIDTH/M_WORD_WIDTH; parameter S_BURST_SIZE = $clog2(S_STRB_WIDTH); parameter M_BURST_SIZE = $clog2(M_STRB_WIDTH); // output bus is wider parameter EXPAND = M_STRB_WIDTH > S_STRB_WIDTH; parameter DATA_WIDTH = EXPAND ? M_DATA_WIDTH : S_DATA_WIDTH; parameter STRB_WIDTH = EXPAND ? M_STRB_WIDTH : S_STRB_WIDTH; // required number of segments in wider bus parameter SEGMENT_COUNT = EXPAND ? (M_STRB_WIDTH / S_STRB_WIDTH) : (S_STRB_WIDTH / M_STRB_WIDTH); // data width and keep width per segment parameter SEGMENT_DATA_WIDTH = DATA_WIDTH / SEGMENT_COUNT; parameter SEGMENT_STRB_WIDTH = STRB_WIDTH / SEGMENT_COUNT; // bus width assertions initial begin if (S_WORD_SIZE * S_STRB_WIDTH != S_DATA_WIDTH) begin $error("Error: AXI slave interface data width not evenly divisble"); $finish; end if (M_WORD_SIZE * M_STRB_WIDTH != M_DATA_WIDTH) begin $error("Error: AXI master interface data width not evenly divisble"); $finish; end if (S_WORD_SIZE != M_WORD_SIZE) begin $error("Error: word size mismatch"); $finish; end if (2**$clog2(S_WORD_WIDTH) != S_WORD_WIDTH) begin $error("Error: AXI slave interface word width must be even power of two"); $finish; end if (2**$clog2(M_WORD_WIDTH) != M_WORD_WIDTH) begin $error("Error: AXI master interface word width must be even power of two"); $finish; end end localparam [1:0] STATE_IDLE = 2'd0, STATE_DATA = 2'd1, STATE_DATA_READ = 2'd2, STATE_DATA_SPLIT = 2'd3; reg [1:0] state_reg = STATE_IDLE, state_next; reg [ID_WIDTH-1:0] id_reg = {ID_WIDTH{1'b0}}, id_next; reg [ADDR_WIDTH-1:0] addr_reg = {ADDR_WIDTH{1'b0}}, addr_next; reg [DATA_WIDTH-1:0] data_reg = {DATA_WIDTH{1'b0}}, data_next; reg [1:0] resp_reg = 2'd0, resp_next; reg [RUSER_WIDTH-1:0] ruser_reg = {RUSER_WIDTH{1'b0}}, ruser_next; reg [7:0] burst_reg = 8'd0, burst_next; reg [2:0] burst_size_reg = 3'd0, burst_size_next; reg [7:0] master_burst_reg = 8'd0, master_burst_next; reg [2:0] master_burst_size_reg = 3'd0, master_burst_size_next; reg s_axi_arready_reg = 1'b0, s_axi_arready_next; reg [ID_WIDTH-1:0] m_axi_arid_reg = {ID_WIDTH{1'b0}}, m_axi_arid_next; reg [ADDR_WIDTH-1:0] m_axi_araddr_reg = {ADDR_WIDTH{1'b0}}, m_axi_araddr_next; reg [7:0] m_axi_arlen_reg = 8'd0, m_axi_arlen_next; reg [2:0] m_axi_arsize_reg = 3'd0, m_axi_arsize_next; reg [1:0] m_axi_arburst_reg = 2'd0, m_axi_arburst_next; reg m_axi_arlock_reg = 1'b0, m_axi_arlock_next; reg [3:0] m_axi_arcache_reg = 4'd0, m_axi_arcache_next; reg [2:0] m_axi_arprot_reg = 3'd0, m_axi_arprot_next; reg [3:0] m_axi_arqos_reg = 4'd0, m_axi_arqos_next; reg [3:0] m_axi_arregion_reg = 4'd0, m_axi_arregion_next; reg [ARUSER_WIDTH-1:0] m_axi_aruser_reg = {ARUSER_WIDTH{1'b0}}, m_axi_aruser_next; reg m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next; reg m_axi_rready_reg = 1'b0, m_axi_rready_next; // internal datapath reg [ID_WIDTH-1:0] s_axi_rid_int; reg [S_DATA_WIDTH-1:0] s_axi_rdata_int; reg [1:0] s_axi_rresp_int; reg s_axi_rlast_int; reg [RUSER_WIDTH-1:0] s_axi_ruser_int; reg s_axi_rvalid_int; reg s_axi_rready_int_reg = 1'b0; wire s_axi_rready_int_early; assign s_axi_arready = s_axi_arready_reg; assign m_axi_arid = FORWARD_ID ? m_axi_arid_reg : {ID_WIDTH{1'b0}}; assign m_axi_araddr = m_axi_araddr_reg; assign m_axi_arlen = m_axi_arlen_reg; assign m_axi_arsize = m_axi_arsize_reg; assign m_axi_arburst = m_axi_arburst_reg; assign m_axi_arlock = m_axi_arlock_reg; assign m_axi_arcache = m_axi_arcache_reg; assign m_axi_arprot = m_axi_arprot_reg; assign m_axi_arqos = m_axi_arqos_reg; assign m_axi_arregion = m_axi_arregion_reg; assign m_axi_aruser = ARUSER_ENABLE ? m_axi_aruser_reg : {ARUSER_WIDTH{1'b0}}; assign m_axi_arvalid = m_axi_arvalid_reg; assign m_axi_rready = m_axi_rready_reg; always @* begin state_next = STATE_IDLE; id_next = id_reg; addr_next = addr_reg; data_next = data_reg; resp_next = resp_reg; ruser_next = ruser_reg; burst_next = burst_reg; burst_size_next = burst_size_reg; master_burst_next = master_burst_reg; master_burst_size_next = master_burst_size_reg; s_axi_arready_next = 1'b0; m_axi_arid_next = m_axi_arid_reg; m_axi_araddr_next = m_axi_araddr_reg; m_axi_arlen_next = m_axi_arlen_reg; m_axi_arsize_next = m_axi_arsize_reg; m_axi_arburst_next = m_axi_arburst_reg; m_axi_arlock_next = m_axi_arlock_reg; m_axi_arcache_next = m_axi_arcache_reg; m_axi_arprot_next = m_axi_arprot_reg; m_axi_arqos_next = m_axi_arqos_reg; m_axi_arregion_next = m_axi_arregion_reg; m_axi_aruser_next = m_axi_aruser_reg; m_axi_arvalid_next = m_axi_arvalid_reg && !m_axi_arready; m_axi_rready_next = 1'b0; if (SEGMENT_COUNT == 1) begin // master output is same width; direct transfer with no splitting/merging s_axi_rid_int = id_reg; s_axi_rdata_int = m_axi_rdata; s_axi_rresp_int = m_axi_rresp; s_axi_rlast_int = m_axi_rlast; s_axi_ruser_int = m_axi_ruser; s_axi_rvalid_int = 0; case (state_reg) STATE_IDLE: begin // idle state; wait for new burst s_axi_arready_next = !m_axi_arvalid; if (s_axi_arready && s_axi_arvalid) begin s_axi_arready_next = 1'b0; id_next = s_axi_arid; m_axi_arid_next = s_axi_arid; m_axi_araddr_next = s_axi_araddr; m_axi_arlen_next = s_axi_arlen; m_axi_arsize_next = s_axi_arsize; m_axi_arburst_next = s_axi_arburst; m_axi_arlock_next = s_axi_arlock; m_axi_arcache_next = s_axi_arcache; m_axi_arprot_next = s_axi_arprot; m_axi_arqos_next = s_axi_arqos; m_axi_arregion_next = s_axi_arregion; m_axi_aruser_next = s_axi_aruser; m_axi_arvalid_next = 1'b1; m_axi_rready_next = s_axi_rready_int_early; state_next = STATE_DATA; end else begin state_next = STATE_IDLE; end end STATE_DATA: begin // data state; transfer read data m_axi_rready_next = s_axi_rready_int_early; if (m_axi_rready && m_axi_rvalid) begin s_axi_rid_int = id_reg; s_axi_rdata_int = m_axi_rdata; s_axi_rresp_int = m_axi_rresp; s_axi_rlast_int = m_axi_rlast; s_axi_ruser_int = m_axi_ruser; s_axi_rvalid_int = 1'b1; if (m_axi_rlast) begin // last data word, return to idle m_axi_rready_next = 1'b0; s_axi_arready_next = !m_axi_arvalid; state_next = STATE_IDLE; end else begin state_next = STATE_DATA; end end else begin state_next = STATE_DATA; end end endcase end else if (EXPAND) begin // master output is wider; split reads s_axi_rid_int = id_reg; s_axi_rdata_int = m_axi_rdata; s_axi_rresp_int = m_axi_rresp; s_axi_rlast_int = m_axi_rlast; s_axi_ruser_int = m_axi_ruser; s_axi_rvalid_int = 0; case (state_reg) STATE_IDLE: begin // idle state; wait for new burst s_axi_arready_next = !m_axi_arvalid; if (s_axi_arready && s_axi_arvalid) begin s_axi_arready_next = 1'b0; id_next = s_axi_arid; m_axi_arid_next = s_axi_arid; m_axi_araddr_next = s_axi_araddr; addr_next = s_axi_araddr; burst_next = s_axi_arlen; burst_size_next = s_axi_arsize; if (CONVERT_BURST && s_axi_arcache[1] && (CONVERT_NARROW_BURST || s_axi_arsize == S_BURST_SIZE)) begin // split reads // require CONVERT_BURST and arcache[1] set master_burst_size_next = M_BURST_SIZE; if (CONVERT_NARROW_BURST) begin m_axi_arlen_next = (({{S_ADDR_BIT_OFFSET+1{1'b0}}, s_axi_arlen} << s_axi_arsize) + s_axi_araddr[M_ADDR_BIT_OFFSET-1:0]) >> M_BURST_SIZE; end else begin m_axi_arlen_next = ({1'b0, s_axi_arlen} + s_axi_araddr[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]) >> $clog2(SEGMENT_COUNT); end m_axi_arsize_next = M_BURST_SIZE; state_next = STATE_DATA_READ; end else begin // output narrow burst master_burst_size_next = s_axi_arsize; m_axi_arlen_next = s_axi_arlen; m_axi_arsize_next = s_axi_arsize; state_next = STATE_DATA; end m_axi_arburst_next = s_axi_arburst; m_axi_arlock_next = s_axi_arlock; m_axi_arcache_next = s_axi_arcache; m_axi_arprot_next = s_axi_arprot; m_axi_arqos_next = s_axi_arqos; m_axi_arregion_next = s_axi_arregion; m_axi_aruser_next = s_axi_aruser; m_axi_arvalid_next = 1'b1; m_axi_rready_next = s_axi_rready_int_early; end else begin state_next = STATE_IDLE; end end STATE_DATA: begin m_axi_rready_next = s_axi_rready_int_early; if (m_axi_rready && m_axi_rvalid) begin s_axi_rid_int = id_reg; s_axi_rdata_int = m_axi_rdata >> (addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_WIDTH); s_axi_rresp_int = m_axi_rresp; s_axi_rlast_int = m_axi_rlast; s_axi_ruser_int = m_axi_ruser; s_axi_rvalid_int = 1'b1; addr_next = addr_reg + (1 << burst_size_reg); if (m_axi_rlast) begin m_axi_rready_next = 1'b0; s_axi_arready_next = !m_axi_arvalid; state_next = STATE_IDLE; end else begin state_next = STATE_DATA; end end else begin state_next = STATE_DATA; end end STATE_DATA_READ: begin m_axi_rready_next = s_axi_rready_int_early; if (m_axi_rready && m_axi_rvalid) begin s_axi_rid_int = id_reg; data_next = m_axi_rdata; resp_next = m_axi_rresp; ruser_next = m_axi_ruser; s_axi_rdata_int = m_axi_rdata >> (addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_WIDTH); s_axi_rresp_int = m_axi_rresp; s_axi_rlast_int = 1'b0; s_axi_ruser_int = m_axi_ruser; s_axi_rvalid_int = 1'b1; burst_next = burst_reg - 1; addr_next = addr_reg + (1 << burst_size_reg); if (burst_reg == 0) begin m_axi_rready_next = 1'b0; s_axi_arready_next = !m_axi_arvalid; s_axi_rlast_int = 1'b1; state_next = STATE_IDLE; end else if (addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin state_next = STATE_DATA_READ; end else begin m_axi_rready_next = 1'b0; state_next = STATE_DATA_SPLIT; end end else begin state_next = STATE_DATA_READ; end end STATE_DATA_SPLIT: begin m_axi_rready_next = 1'b0; if (s_axi_rready_int_reg) begin s_axi_rid_int = id_reg; s_axi_rdata_int = data_reg >> (addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_WIDTH); s_axi_rresp_int = resp_reg; s_axi_rlast_int = 1'b0; s_axi_ruser_int = ruser_reg; s_axi_rvalid_int = 1'b1; burst_next = burst_reg - 1; addr_next = addr_reg + (1 << burst_size_reg); if (burst_reg == 0) begin s_axi_arready_next = !m_axi_arvalid; s_axi_rlast_int = 1'b1; state_next = STATE_IDLE; end else if (addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin m_axi_rready_next = s_axi_rready_int_early; state_next = STATE_DATA_READ; end else begin state_next = STATE_DATA_SPLIT; end end else begin state_next = STATE_DATA_SPLIT; end end endcase end else begin // master output is narrower; merge reads and possibly split burst s_axi_rid_int = id_reg; s_axi_rdata_int = data_reg; s_axi_rresp_int = resp_reg; s_axi_rlast_int = 1'b0; s_axi_ruser_int = m_axi_ruser; s_axi_rvalid_int = 0; case (state_reg) STATE_IDLE: begin // idle state; wait for new burst s_axi_arready_next = !m_axi_arvalid; resp_next = 2'd0; if (s_axi_arready && s_axi_arvalid) begin s_axi_arready_next = 1'b0; id_next = s_axi_arid; m_axi_arid_next = s_axi_arid; m_axi_araddr_next = s_axi_araddr; addr_next = s_axi_araddr; burst_next = s_axi_arlen; burst_size_next = s_axi_arsize; if (s_axi_arsize > M_BURST_SIZE) begin // need to adjust burst size if ({s_axi_arlen, {S_BURST_SIZE-M_BURST_SIZE{1'b1}}} >> (S_BURST_SIZE-s_axi_arsize) > 255) begin // limit burst length to max master_burst_next = 8'd255; end else begin master_burst_next = {s_axi_arlen, {S_BURST_SIZE-M_BURST_SIZE{1'b1}}} >> (S_BURST_SIZE-s_axi_arsize); end master_burst_size_next = M_BURST_SIZE; m_axi_arlen_next = master_burst_next; m_axi_arsize_next = master_burst_size_next; end else begin // pass through narrow (enough) burst master_burst_next = s_axi_arlen; master_burst_size_next = s_axi_arsize; m_axi_arlen_next = s_axi_arlen; m_axi_arsize_next = s_axi_arsize; end m_axi_arburst_next = s_axi_arburst; m_axi_arlock_next = s_axi_arlock; m_axi_arcache_next = s_axi_arcache; m_axi_arprot_next = s_axi_arprot; m_axi_arqos_next = s_axi_arqos; m_axi_arregion_next = s_axi_arregion; m_axi_aruser_next = s_axi_aruser; m_axi_arvalid_next = 1'b1; m_axi_rready_next = s_axi_rready_int_early; state_next = STATE_DATA; end else begin state_next = STATE_IDLE; end end STATE_DATA: begin m_axi_rready_next = s_axi_rready_int_early; if (m_axi_rready && m_axi_rvalid) begin data_next[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET]*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH] = m_axi_rdata; if (m_axi_rresp) begin resp_next = m_axi_rresp; end s_axi_rid_int = id_reg; s_axi_rdata_int = data_next; s_axi_rresp_int = resp_next; s_axi_rlast_int = 1'b0; s_axi_ruser_int = m_axi_ruser; s_axi_rvalid_int = 1'b0; master_burst_next = master_burst_reg - 1; addr_next = addr_reg + (1 << master_burst_size_reg); if (addr_next[burst_size_reg] != addr_reg[burst_size_reg]) begin data_next = {DATA_WIDTH{1'b0}}; burst_next = burst_reg - 1; s_axi_rvalid_int = 1'b1; end if (master_burst_reg == 0) begin if (burst_reg == 0) begin s_axi_rlast_int = 1'b1; s_axi_rvalid_int = 1'b1; s_axi_arready_next = !m_axi_arvalid; state_next = STATE_IDLE; end else begin // start new burst m_axi_araddr_next = addr_next; if (burst_size_reg > M_BURST_SIZE) begin // need to adjust burst size if ({burst_next, {S_BURST_SIZE-M_BURST_SIZE{1'b1}}} >> (S_BURST_SIZE-burst_size_reg) > 255) begin // limit burst length to max master_burst_next = 8'd255; end else begin master_burst_next = {burst_next, {S_BURST_SIZE-M_BURST_SIZE{1'b1}}} >> (S_BURST_SIZE-burst_size_reg); end master_burst_size_next = M_BURST_SIZE; m_axi_arlen_next = master_burst_next; m_axi_arsize_next = master_burst_size_next; end else begin // pass through narrow (enough) burst master_burst_next = burst_next; master_burst_size_next = burst_size_reg; m_axi_arlen_next = burst_next; m_axi_arsize_next = burst_size_reg; end m_axi_arlen_next = master_burst_next; m_axi_arsize_next = master_burst_size_reg; m_axi_arvalid_next = 1'b1; state_next = STATE_DATA; end end else begin state_next = STATE_DATA; end end else begin state_next = STATE_DATA; end end endcase end end always @(posedge clk) begin if (rst) begin state_reg <= STATE_IDLE; s_axi_arready_reg <= 1'b0; m_axi_arvalid_reg <= 1'b0; m_axi_rready_reg <= 1'b0; end else begin state_reg <= state_next; s_axi_arready_reg <= s_axi_arready_next; m_axi_arvalid_reg <= m_axi_arvalid_next; m_axi_rready_reg <= m_axi_rready_next; end id_reg <= id_next; addr_reg <= addr_next; data_reg <= data_next; resp_reg <= resp_next; ruser_reg <= ruser_next; burst_reg <= burst_next; burst_size_reg <= burst_size_next; master_burst_reg <= master_burst_next; master_burst_size_reg <= master_burst_size_next; m_axi_arid_reg <= m_axi_arid_next; m_axi_araddr_reg <= m_axi_araddr_next; m_axi_arlen_reg <= m_axi_arlen_next; m_axi_arsize_reg <= m_axi_arsize_next; m_axi_arburst_reg <= m_axi_arburst_next; m_axi_arlock_reg <= m_axi_arlock_next; m_axi_arcache_reg <= m_axi_arcache_next; m_axi_arprot_reg <= m_axi_arprot_next; m_axi_arqos_reg <= m_axi_arqos_next; m_axi_arregion_reg <= m_axi_arregion_next; m_axi_aruser_reg <= m_axi_aruser_next; end // output datapath logic reg [ID_WIDTH-1:0] s_axi_rid_reg = {ID_WIDTH{1'b0}}; reg [S_DATA_WIDTH-1:0] s_axi_rdata_reg = {S_DATA_WIDTH{1'b0}}; reg [1:0] s_axi_rresp_reg = 2'd0; reg s_axi_rlast_reg = 1'b0; reg [RUSER_WIDTH-1:0] s_axi_ruser_reg = 1'b0; reg s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next; reg [ID_WIDTH-1:0] temp_s_axi_rid_reg = {ID_WIDTH{1'b0}}; reg [S_DATA_WIDTH-1:0] temp_s_axi_rdata_reg = {S_DATA_WIDTH{1'b0}}; reg [1:0] temp_s_axi_rresp_reg = 2'd0; reg temp_s_axi_rlast_reg = 1'b0; reg [RUSER_WIDTH-1:0] temp_s_axi_ruser_reg = 1'b0; reg temp_s_axi_rvalid_reg = 1'b0, temp_s_axi_rvalid_next; // datapath control reg store_axi_r_int_to_output; reg store_axi_r_int_to_temp; reg store_axi_r_temp_to_output; assign s_axi_rid = s_axi_rid_reg; assign s_axi_rdata = s_axi_rdata_reg; assign s_axi_rresp = s_axi_rresp_reg; assign s_axi_rlast = s_axi_rlast_reg; assign s_axi_ruser = RUSER_ENABLE ? s_axi_ruser_reg : {RUSER_WIDTH{1'b0}}; assign s_axi_rvalid = s_axi_rvalid_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign s_axi_rready_int_early = s_axi_rready | (~temp_s_axi_rvalid_reg & (~s_axi_rvalid_reg | ~s_axi_rvalid_int)); always @* begin // transfer sink ready state to source s_axi_rvalid_next = s_axi_rvalid_reg; temp_s_axi_rvalid_next = temp_s_axi_rvalid_reg; store_axi_r_int_to_output = 1'b0; store_axi_r_int_to_temp = 1'b0; store_axi_r_temp_to_output = 1'b0; if (s_axi_rready_int_reg) begin // input is ready if (s_axi_rready | ~s_axi_rvalid_reg) begin // output is ready or currently not valid, transfer data to output s_axi_rvalid_next = s_axi_rvalid_int; store_axi_r_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_s_axi_rvalid_next = s_axi_rvalid_int; store_axi_r_int_to_temp = 1'b1; end end else if (s_axi_rready) begin // input is not ready, but output is ready s_axi_rvalid_next = temp_s_axi_rvalid_reg; temp_s_axi_rvalid_next = 1'b0; store_axi_r_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin s_axi_rvalid_reg <= 1'b0; s_axi_rready_int_reg <= 1'b0; temp_s_axi_rvalid_reg <= 1'b0; end else begin s_axi_rvalid_reg <= s_axi_rvalid_next; s_axi_rready_int_reg <= s_axi_rready_int_early; temp_s_axi_rvalid_reg <= temp_s_axi_rvalid_next; end // datapath if (store_axi_r_int_to_output) begin s_axi_rid_reg <= s_axi_rid_int; s_axi_rdata_reg <= s_axi_rdata_int; s_axi_rresp_reg <= s_axi_rresp_int; s_axi_rlast_reg <= s_axi_rlast_int; s_axi_ruser_reg <= s_axi_ruser_int; end else if (store_axi_r_temp_to_output) begin s_axi_rid_reg <= temp_s_axi_rid_reg; s_axi_rdata_reg <= temp_s_axi_rdata_reg; s_axi_rresp_reg <= temp_s_axi_rresp_reg; s_axi_rlast_reg <= temp_s_axi_rlast_reg; s_axi_ruser_reg <= temp_s_axi_ruser_reg; end if (store_axi_r_int_to_temp) begin temp_s_axi_rid_reg <= s_axi_rid_int; temp_s_axi_rdata_reg <= s_axi_rdata_int; temp_s_axi_rresp_reg <= s_axi_rresp_int; temp_s_axi_rlast_reg <= s_axi_rlast_int; temp_s_axi_ruser_reg <= s_axi_ruser_int; end end endmodule