/* Copyright (c) 2019 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4 RAM read interface */ module axi_ram_rd_if # ( // Width of data bus in bits parameter DATA_WIDTH = 32, // Width of address bus in bits parameter ADDR_WIDTH = 16, // Width of wstrb (width of data bus in words) parameter STRB_WIDTH = (DATA_WIDTH/8), // Width of ID signal parameter ID_WIDTH = 8, // Propagate aruser signal parameter ARUSER_ENABLE = 0, // Width of aruser signal parameter ARUSER_WIDTH = 1, // Propagate ruser signal parameter RUSER_ENABLE = 0, // Width of ruser signal parameter RUSER_WIDTH = 1, // Extra pipeline register on output parameter PIPELINE_OUTPUT = 0 ) ( input wire clk, input wire rst, /* * AXI slave interface */ input wire [ID_WIDTH-1:0] s_axi_arid, input wire [ADDR_WIDTH-1:0] s_axi_araddr, input wire [7:0] s_axi_arlen, input wire [2:0] s_axi_arsize, input wire [1:0] s_axi_arburst, input wire s_axi_arlock, input wire [3:0] s_axi_arcache, input wire [2:0] s_axi_arprot, input wire [3:0] s_axi_arqos, input wire [3:0] s_axi_arregion, input wire [ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, output wire [ID_WIDTH-1:0] s_axi_rid, output wire [DATA_WIDTH-1:0] s_axi_rdata, output wire [1:0] s_axi_rresp, output wire s_axi_rlast, output wire [RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, /* * RAM interface */ output wire [ID_WIDTH-1:0] ram_rd_cmd_id, output wire [ADDR_WIDTH-1:0] ram_rd_cmd_addr, output wire ram_rd_cmd_lock, output wire [3:0] ram_rd_cmd_cache, output wire [2:0] ram_rd_cmd_prot, output wire [3:0] ram_rd_cmd_qos, output wire [3:0] ram_rd_cmd_region, output wire [ARUSER_WIDTH-1:0] ram_rd_cmd_auser, output wire ram_rd_cmd_en, output wire ram_rd_cmd_last, input wire ram_rd_cmd_ready, input wire [ID_WIDTH-1:0] ram_rd_resp_id, input wire [DATA_WIDTH-1:0] ram_rd_resp_data, input wire ram_rd_resp_last, input wire [RUSER_WIDTH-1:0] ram_rd_resp_user, input wire ram_rd_resp_valid, output wire ram_rd_resp_ready ); parameter VALID_ADDR_WIDTH = ADDR_WIDTH - $clog2(STRB_WIDTH); parameter WORD_WIDTH = STRB_WIDTH; parameter WORD_SIZE = DATA_WIDTH/WORD_WIDTH; // bus width assertions initial begin if (WORD_SIZE * STRB_WIDTH != DATA_WIDTH) begin $error("Error: AXI data width not evenly divisble (instance %m)"); $finish; end if (2**$clog2(WORD_WIDTH) != WORD_WIDTH) begin $error("Error: AXI word width must be even power of two (instance %m)"); $finish; end end localparam [0:0] STATE_IDLE = 1'd0, STATE_BURST = 1'd1; reg [0:0] state_reg = STATE_IDLE, state_next; reg [ID_WIDTH-1:0] read_id_reg = {ID_WIDTH{1'b0}}, read_id_next; reg [ADDR_WIDTH-1:0] read_addr_reg = {ADDR_WIDTH{1'b0}}, read_addr_next; reg read_lock_reg = 1'b0, read_lock_next; reg [3:0] read_cache_reg = 4'd0, read_cache_next; reg [2:0] read_prot_reg = 3'd0, read_prot_next; reg [3:0] read_qos_reg = 4'd0, read_qos_next; reg [3:0] read_region_reg = 4'd0, read_region_next; reg [ARUSER_WIDTH-1:0] read_aruser_reg = {ARUSER_WIDTH{1'b0}}, read_aruser_next; reg read_addr_valid_reg = 1'b0, read_addr_valid_next; reg read_last_reg = 1'b0, read_last_next; reg [7:0] read_count_reg = 8'd0, read_count_next; reg [2:0] read_size_reg = 3'd0, read_size_next; reg [1:0] read_burst_reg = 2'd0, read_burst_next; reg s_axi_arready_reg = 1'b0, s_axi_arready_next; reg [ID_WIDTH-1:0] s_axi_rid_pipe_reg = {ID_WIDTH{1'b0}}; reg [DATA_WIDTH-1:0] s_axi_rdata_pipe_reg = {DATA_WIDTH{1'b0}}; reg s_axi_rlast_pipe_reg = 1'b0; reg [RUSER_WIDTH-1:0] s_axi_ruser_pipe_reg = {RUSER_WIDTH{1'b0}}; reg s_axi_rvalid_pipe_reg = 1'b0; assign s_axi_arready = s_axi_arready_reg; assign s_axi_rid = PIPELINE_OUTPUT ? s_axi_rid_pipe_reg : ram_rd_resp_id; assign s_axi_rdata = PIPELINE_OUTPUT ? s_axi_rdata_pipe_reg : ram_rd_resp_data; assign s_axi_rresp = 2'b00; assign s_axi_rlast = PIPELINE_OUTPUT ? s_axi_rlast_pipe_reg : ram_rd_resp_last; assign s_axi_ruser = PIPELINE_OUTPUT ? s_axi_ruser_pipe_reg : ram_rd_resp_user; assign s_axi_rvalid = PIPELINE_OUTPUT ? s_axi_rvalid_pipe_reg : ram_rd_resp_valid; assign ram_rd_cmd_id = read_id_reg; assign ram_rd_cmd_addr = read_addr_reg; assign ram_rd_cmd_lock = read_lock_reg; assign ram_rd_cmd_cache = read_cache_reg; assign ram_rd_cmd_prot = read_prot_reg; assign ram_rd_cmd_qos = read_qos_reg; assign ram_rd_cmd_region = read_region_reg; assign ram_rd_cmd_auser = ARUSER_ENABLE ? read_aruser_reg : {ARUSER_WIDTH{1'b0}}; assign ram_rd_cmd_en = read_addr_valid_reg; assign ram_rd_cmd_last = read_last_reg; assign ram_rd_resp_ready = s_axi_rready || (PIPELINE_OUTPUT && !s_axi_rvalid_pipe_reg); always @* begin state_next = STATE_IDLE; read_id_next = read_id_reg; read_addr_next = read_addr_reg; read_lock_next = read_lock_reg; read_cache_next = read_cache_reg; read_prot_next = read_prot_reg; read_qos_next = read_qos_reg; read_region_next = read_region_reg; read_aruser_next = read_aruser_reg; read_addr_valid_next = read_addr_valid_reg && !ram_rd_cmd_ready; read_last_next = read_last_reg; read_count_next = read_count_reg; read_size_next = read_size_reg; read_burst_next = read_burst_reg; s_axi_arready_next = 1'b0; case (state_reg) STATE_IDLE: begin s_axi_arready_next = 1'b1; if (s_axi_arready && s_axi_arvalid) begin read_id_next = s_axi_arid; read_addr_next = s_axi_araddr; read_lock_next = s_axi_arlock; read_cache_next = s_axi_arcache; read_prot_next = s_axi_arprot; read_qos_next = s_axi_arqos; read_region_next = s_axi_arregion; read_aruser_next = s_axi_aruser; read_count_next = s_axi_arlen; read_size_next = s_axi_arsize < $clog2(STRB_WIDTH) ? s_axi_arsize : $clog2(STRB_WIDTH); read_burst_next = s_axi_arburst; s_axi_arready_next = 1'b0; read_last_next = read_count_next == 0; read_addr_valid_next = 1'b1; state_next = STATE_BURST; end else begin state_next = STATE_IDLE; end end STATE_BURST: begin if (ram_rd_cmd_ready && ram_rd_cmd_en) begin if (read_burst_reg != 2'b00) begin read_addr_next = read_addr_reg + (1 << read_size_reg); end read_count_next = read_count_reg - 1; read_last_next = read_count_next == 0; if (read_count_reg > 0) begin read_addr_valid_next = 1'b1; state_next = STATE_BURST; end else begin s_axi_arready_next = 1'b1; state_next = STATE_IDLE; end end else begin state_next = STATE_BURST; end end endcase end always @(posedge clk) begin state_reg <= state_next; read_id_reg <= read_id_next; read_addr_reg <= read_addr_next; read_lock_reg <= read_lock_next; read_cache_reg <= read_cache_next; read_prot_reg <= read_prot_next; read_qos_reg <= read_qos_next; read_region_reg <= read_region_next; read_aruser_reg <= read_aruser_next; read_addr_valid_reg <= read_addr_valid_next; read_last_reg <= read_last_next; read_count_reg <= read_count_next; read_size_reg <= read_size_next; read_burst_reg <= read_burst_next; s_axi_arready_reg <= s_axi_arready_next; if (!s_axi_rvalid_pipe_reg || s_axi_rready) begin s_axi_rid_pipe_reg <= ram_rd_resp_id; s_axi_rdata_pipe_reg <= ram_rd_resp_data; s_axi_rlast_pipe_reg <= ram_rd_resp_last; s_axi_ruser_pipe_reg <= ram_rd_resp_user; s_axi_rvalid_pipe_reg <= ram_rd_resp_valid; end if (rst) begin state_reg <= STATE_IDLE; read_addr_valid_reg <= 1'b0; s_axi_arready_reg <= 1'b0; s_axi_rvalid_pipe_reg <= 1'b0; end end endmodule