#!/usr/bin/env python """ Generates an AXI Stream switch with the specified number of ports """ from __future__ import print_function import argparse import math from jinja2 import Template def main(): parser = argparse.ArgumentParser(description=__doc__.strip()) parser.add_argument('-p', '--ports', type=int, default=[4], nargs='+', help="number of ports") parser.add_argument('-n', '--name', type=str, help="module name") parser.add_argument('-o', '--output', type=str, help="output file name") args = parser.parse_args() try: generate(**args.__dict__) except IOError as ex: print(ex) exit(1) def generate(ports=4, name=None, output=None): if type(ports) is int: m = n = ports elif len(ports) == 1: m = n = ports[0] else: m, n = ports if name is None: name = "axis_switch_64_{0}x{1}".format(m, n) if output is None: output = name + ".v" print("Opening file '{0}'...".format(output)) output_file = open(output, 'w') print("Generating {0}x{1} port AXI Stream switch {2}...".format(m, n, name)) cm = int(math.ceil(math.log(m, 2))) cn = int(math.ceil(math.log(n, 2))) t = Template(u"""/* Copyright (c) 2016-2017 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4-Stream {{m}}x{{n}} switch (64 bit datapath) */ module {{name}} # ( parameter DATA_WIDTH = 64, parameter KEEP_WIDTH = (DATA_WIDTH/8), parameter DEST_WIDTH = {{cn}}, {%- for p in range(n) %} parameter OUT_{{p}}_BASE = {{p}}, parameter OUT_{{p}}_TOP = {{p}}, parameter OUT_{{p}}_CONNECT = {{m}}'b{% for p in range(m) %}1{% endfor %}, {%- endfor %} // arbitration type: "PRIORITY" or "ROUND_ROBIN" parameter ARB_TYPE = "ROUND_ROBIN", // LSB priority: "LOW", "HIGH" parameter LSB_PRIORITY = "HIGH" ) ( input wire clk, input wire rst, /* * AXI Stream inputs */ {%- for p in range(m) %} input wire [DATA_WIDTH-1:0] input_{{p}}_axis_tdata, input wire [KEEP_WIDTH-1:0] input_{{p}}_axis_tkeep, input wire input_{{p}}_axis_tvalid, output wire input_{{p}}_axis_tready, input wire input_{{p}}_axis_tlast, input wire [DEST_WIDTH-1:0] input_{{p}}_axis_tdest, input wire input_{{p}}_axis_tuser, {% endfor %} /* * AXI Stream outputs */ {%- for p in range(n) %} output wire [DATA_WIDTH-1:0] output_{{p}}_axis_tdata, output wire [KEEP_WIDTH-1:0] output_{{p}}_axis_tkeep, output wire output_{{p}}_axis_tvalid, input wire output_{{p}}_axis_tready, output wire output_{{p}}_axis_tlast, output wire [DEST_WIDTH-1:0] output_{{p}}_axis_tdest, output wire output_{{p}}_axis_tuser{% if not loop.last %},{% endif %} {% endfor -%} ); // check configuration initial begin if (2**DEST_WIDTH < {{n}}) begin $error("Error: DEST_WIDTH too small for port count"); $finish; end if ({%- for p in range(n) %}(OUT_{{p}}_BASE & 2**DEST_WIDTH-1) != OUT_{{p}}_BASE || (OUT_{{p}}_TOP & 2**DEST_WIDTH-1) != OUT_{{p}}_TOP{% if not loop.last %} || {% endif %}{% endfor -%}) begin $error("Error: value out of range"); $finish; end if ({%- for p in range(n) %}OUT_{{p}}_BASE > OUT_{{p}}_TOP{% if not loop.last %} || {% endif %}{% endfor -%}) begin $error("Error: invalid range"); $finish; end if ({%- for p in range(n-1) %}{% set outer_loop = loop %}{%- for q in range(p+1,n) %}(OUT_{{p}}_BASE <= OUT_{{q}}_TOP && OUT_{{q}}_BASE <= OUT_{{p}}_TOP){% if not (loop.last and outer_loop.last) %} || {% endif %}{% endfor -%}{% endfor -%}) begin $error("Error: ranges overlap"); $finish; end end {%- for p in range(m) %} reg [{{n-1}}:0] input_{{p}}_request_reg = {{n}}'d0, input_{{p}}_request_next; reg input_{{p}}_request_valid_reg = 1'b0, input_{{p}}_request_valid_next; reg input_{{p}}_request_error_reg = 1'b0, input_{{p}}_request_error_next; {%- endfor %} {% for p in range(n) %} reg [{{cm-1}}:0] select_{{p}}_reg = {{cm}}'d0, select_{{p}}_next; {%- endfor %} {% for p in range(n) %} reg enable_{{p}}_reg = 1'b0, enable_{{p}}_next; {%- endfor %} {% for p in range(m) %} reg input_{{p}}_axis_tready_reg = 1'b0, input_{{p}}_axis_tready_next; {%- endfor %} // internal datapath {%- for p in range(n) %} reg [DATA_WIDTH-1:0] output_{{p}}_axis_tdata_int; reg [KEEP_WIDTH-1:0] output_{{p}}_axis_tkeep_int; reg output_{{p}}_axis_tvalid_int; reg output_{{p}}_axis_tready_int_reg = 1'b0; reg output_{{p}}_axis_tlast_int; reg [DEST_WIDTH-1:0] output_{{p}}_axis_tdest_int; reg output_{{p}}_axis_tuser_int; wire output_{{p}}_axis_tready_int_early; {% endfor %} {%- for p in range(m) %} assign input_{{p}}_axis_tready = input_{{p}}_axis_tready_reg; {%- endfor %} // mux for incoming packet {% for p in range(n) %} reg [DATA_WIDTH-1:0] current_input_{{p}}_axis_tdata; reg [KEEP_WIDTH-1:0] current_input_{{p}}_axis_tkeep; reg current_input_{{p}}_axis_tvalid; reg current_input_{{p}}_axis_tready; reg current_input_{{p}}_axis_tlast; reg [DEST_WIDTH-1:0] current_input_{{p}}_axis_tdest; reg current_input_{{p}}_axis_tuser; always @* begin case (select_{{p}}_reg) {%- for q in range(m) %} {{cm}}'d{{q}}: begin current_input_{{p}}_axis_tdata = input_{{q}}_axis_tdata; current_input_{{p}}_axis_tkeep = input_{{q}}_axis_tkeep; current_input_{{p}}_axis_tvalid = input_{{q}}_axis_tvalid; current_input_{{p}}_axis_tready = input_{{q}}_axis_tready; current_input_{{p}}_axis_tlast = input_{{q}}_axis_tlast; current_input_{{p}}_axis_tdest = input_{{q}}_axis_tdest; current_input_{{p}}_axis_tuser = input_{{q}}_axis_tuser; end {%- endfor %} default: begin current_input_{{p}}_axis_tdata = {DATA_WIDTH{1'b0}}; current_input_{{p}}_axis_tkeep = {KEEP_WIDTH{1'b0}}; current_input_{{p}}_axis_tvalid = 1'b0; current_input_{{p}}_axis_tready = 1'b0; current_input_{{p}}_axis_tlast = 1'b0; current_input_{{p}}_axis_tdest = {DEST_WIDTH{1'b0}}; current_input_{{p}}_axis_tuser = 1'b0; end endcase end {% endfor %} // arbiter instances {% for p in range(n) %} wire [{{m-1}}:0] request_{{p}}; wire [{{m-1}}:0] acknowledge_{{p}}; wire [{{m-1}}:0] grant_{{p}}; wire grant_valid_{{p}}; wire [{{cm-1}}:0] grant_encoded_{{p}}; {% endfor %} {%- for p in range(n) %} arbiter #( .PORTS({{m}}), .TYPE(ARB_TYPE), .BLOCK("ACKNOWLEDGE"), .LSB_PRIORITY(LSB_PRIORITY) ) arb_{{p}}_inst ( .clk(clk), .rst(rst), .request(request_{{p}}), .acknowledge(acknowledge_{{p}}), .grant(grant_{{p}}), .grant_valid(grant_valid_{{p}}), .grant_encoded(grant_encoded_{{p}}) ); {% endfor %} // request generation {%- for p in range(n) %} {%- for q in range(m) %} assign request_{{p}}[{{q}}] = input_{{q}}_request_reg[{{p}}] & ~acknowledge_{{p}}[{{q}}]; {%- endfor %} {% endfor %} // acknowledge generation {%- for p in range(n) %} {%- for q in range(m) %} assign acknowledge_{{p}}[{{q}}] = grant_{{p}}[{{q}}] & input_{{q}}_axis_tvalid & input_{{q}}_axis_tready & input_{{q}}_axis_tlast; {%- endfor %} {% endfor %} always @* begin {%- for p in range(n) %} select_{{p}}_next = select_{{p}}_reg; {%- endfor %} {% for p in range(n) %} enable_{{p}}_next = enable_{{p}}_reg; {%- endfor %} {% for p in range(m) %} input_{{p}}_request_next = input_{{p}}_request_reg; input_{{p}}_request_valid_next = input_{{p}}_request_valid_reg; input_{{p}}_request_error_next = input_{{p}}_request_error_reg; {% endfor %} {%- for p in range(m) %} input_{{p}}_axis_tready_next = 1'b0; {%- endfor %} {% for p in range(n) %} output_{{p}}_axis_tdata_int = {DATA_WIDTH{1'b0}}; output_{{p}}_axis_tkeep_int = {DATA_WIDTH{1'b0}}; output_{{p}}_axis_tvalid_int = 1'b0; output_{{p}}_axis_tlast_int = 1'b0; output_{{p}}_axis_tdest_int = {DEST_WIDTH{1'b0}}; output_{{p}}_axis_tuser_int = 1'b0; {% endfor %} // input decoding {% for p in range(m) %} if (input_{{p}}_request_valid_reg | input_{{p}}_request_error_reg) begin if (input_{{p}}_axis_tvalid & input_{{p}}_axis_tready & input_{{p}}_axis_tlast) begin input_{{p}}_request_next = {DEST_WIDTH{1'b0}}; input_{{p}}_request_valid_next = 1'b0; input_{{p}}_request_error_next = 1'b0; end end else if (input_{{p}}_axis_tvalid) begin {%- for q in range(n) %} input_{{p}}_request_next[{{q}}] = (input_{{p}}_axis_tdest >= OUT_{{q}}_BASE) & (input_{{p}}_axis_tdest <= OUT_{{q}}_TOP) & OUT_{{q}}_CONNECT[{{p}}]; {%- endfor %} if (input_{{p}}_request_next) begin input_{{p}}_request_valid_next = 1'b1; end else begin input_{{p}}_request_error_next = 1'b1; end end {% endfor %} // output control {% for p in range(n) %} if (current_input_{{p}}_axis_tvalid & current_input_{{p}}_axis_tready) begin if (current_input_{{p}}_axis_tlast) begin enable_{{p}}_next = 1'b0; end end if (~enable_{{p}}_reg & grant_valid_{{p}}) begin enable_{{p}}_next = 1'b1; select_{{p}}_next = grant_encoded_{{p}}; end {% endfor %} // generate ready signal on selected port {% for p in range(n) %} if (enable_{{p}}_next) begin case (select_{{p}}_next) {%- for q in range(m) %} {{cm}}'d{{q}}: input_{{q}}_axis_tready_next = output_{{p}}_axis_tready_int_early; {%- endfor %} endcase end {% endfor %} {%- for p in range(m) %} if (input_{{p}}_request_error_next) input_{{p}}_axis_tready_next = 1'b1; {%- endfor %} // pass through selected packet data {% for p in range(n) %} output_{{p}}_axis_tdata_int = current_input_{{p}}_axis_tdata; output_{{p}}_axis_tkeep_int = current_input_{{p}}_axis_tkeep; output_{{p}}_axis_tvalid_int = current_input_{{p}}_axis_tvalid & current_input_{{p}}_axis_tready & enable_{{p}}_reg; output_{{p}}_axis_tlast_int = current_input_{{p}}_axis_tlast; output_{{p}}_axis_tdest_int = current_input_{{p}}_axis_tdest; output_{{p}}_axis_tuser_int = current_input_{{p}}_axis_tuser; {% endfor -%} end always @(posedge clk) begin if (rst) begin {%- for p in range(m) %} input_{{p}}_request_reg <= {{n}}'d0; input_{{p}}_request_valid_reg <= 1'b0; input_{{p}}_request_error_reg <= 1'b0; {%- endfor %} {%- for p in range(n) %} select_{{p}}_reg <= 2'd0; {%- endfor %} {%- for p in range(n) %} enable_{{p}}_reg <= 1'b0; {%- endfor %} {%- for p in range(m) %} input_{{p}}_axis_tready_reg <= 1'b0; {%- endfor %} end else begin {%- for p in range(m) %} input_{{p}}_request_reg <= input_{{p}}_request_next; input_{{p}}_request_valid_reg <= input_{{p}}_request_valid_next; input_{{p}}_request_error_reg <= input_{{p}}_request_error_next; {%- endfor %} {%- for p in range(n) %} select_{{p}}_reg <= select_{{p}}_next; {%- endfor %} {%- for p in range(n) %} enable_{{p}}_reg <= enable_{{p}}_next; {%- endfor %} {%- for p in range(m) %} input_{{p}}_axis_tready_reg <= input_{{p}}_axis_tready_next; {%- endfor %} end end {% for p in range(n) %} // output {{p}} datapath logic reg [DATA_WIDTH-1:0] output_{{p}}_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] output_{{p}}_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg output_{{p}}_axis_tvalid_reg = 1'b0, output_{{p}}_axis_tvalid_next; reg output_{{p}}_axis_tlast_reg = 1'b0; reg [DEST_WIDTH-1:0] output_{{p}}_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg output_{{p}}_axis_tuser_reg = 1'b0; reg [DATA_WIDTH-1:0] temp_{{p}}_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] temp_{{p}}_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg temp_{{p}}_axis_tvalid_reg = 1'b0, temp_{{p}}_axis_tvalid_next; reg temp_{{p}}_axis_tlast_reg = 1'b0; reg [DEST_WIDTH-1:0] temp_{{p}}_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg temp_{{p}}_axis_tuser_reg = 1'b0; // datapath control reg store_{{p}}_axis_int_to_output; reg store_{{p}}_axis_int_to_temp; reg store_{{p}}_axis_temp_to_output; assign output_{{p}}_axis_tdata = output_{{p}}_axis_tdata_reg; assign output_{{p}}_axis_tkeep = output_{{p}}_axis_tkeep_reg; assign output_{{p}}_axis_tvalid = output_{{p}}_axis_tvalid_reg; assign output_{{p}}_axis_tlast = output_{{p}}_axis_tlast_reg; assign output_{{p}}_axis_tdest = output_{{p}}_axis_tdest_reg; assign output_{{p}}_axis_tuser = output_{{p}}_axis_tuser_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign output_{{p}}_axis_tready_int_early = output_{{p}}_axis_tready | (~temp_{{p}}_axis_tvalid_reg & (~output_{{p}}_axis_tvalid_reg | ~output_{{p}}_axis_tvalid_int)); always @* begin // transfer sink ready state to source output_{{p}}_axis_tvalid_next = output_{{p}}_axis_tvalid_reg; temp_{{p}}_axis_tvalid_next = temp_{{p}}_axis_tvalid_reg; store_{{p}}_axis_int_to_output = 1'b0; store_{{p}}_axis_int_to_temp = 1'b0; store_{{p}}_axis_temp_to_output = 1'b0; if (output_{{p}}_axis_tready_int_reg) begin // input is ready if (output_{{p}}_axis_tready | ~output_{{p}}_axis_tvalid_reg) begin // output is ready or currently not valid, transfer data to output output_{{p}}_axis_tvalid_next = output_{{p}}_axis_tvalid_int; store_{{p}}_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_{{p}}_axis_tvalid_next = output_{{p}}_axis_tvalid_int; store_{{p}}_axis_int_to_temp = 1'b1; end end else if (output_{{p}}_axis_tready) begin // input is not ready, but output is ready output_{{p}}_axis_tvalid_next = temp_{{p}}_axis_tvalid_reg; temp_{{p}}_axis_tvalid_next = 1'b0; store_{{p}}_axis_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin output_{{p}}_axis_tvalid_reg <= 1'b0; output_{{p}}_axis_tready_int_reg <= 1'b0; temp_{{p}}_axis_tvalid_reg <= 1'b0; end else begin output_{{p}}_axis_tvalid_reg <= output_{{p}}_axis_tvalid_next; output_{{p}}_axis_tready_int_reg <= output_{{p}}_axis_tready_int_early; temp_{{p}}_axis_tvalid_reg <= temp_{{p}}_axis_tvalid_next; end // datapath if (store_{{p}}_axis_int_to_output) begin output_{{p}}_axis_tdata_reg <= output_{{p}}_axis_tdata_int; output_{{p}}_axis_tkeep_reg <= output_{{p}}_axis_tkeep_int; output_{{p}}_axis_tlast_reg <= output_{{p}}_axis_tlast_int; output_{{p}}_axis_tdest_reg <= output_{{p}}_axis_tdest_int; output_{{p}}_axis_tuser_reg <= output_{{p}}_axis_tuser_int; end else if (store_{{p}}_axis_temp_to_output) begin output_{{p}}_axis_tdata_reg <= temp_{{p}}_axis_tdata_reg; output_{{p}}_axis_tkeep_reg <= temp_{{p}}_axis_tkeep_reg; output_{{p}}_axis_tlast_reg <= temp_{{p}}_axis_tlast_reg; output_{{p}}_axis_tdest_reg <= temp_{{p}}_axis_tdest_reg; output_{{p}}_axis_tuser_reg <= temp_{{p}}_axis_tuser_reg; end if (store_{{p}}_axis_int_to_temp) begin temp_{{p}}_axis_tdata_reg <= output_{{p}}_axis_tdata_int; temp_{{p}}_axis_tkeep_reg <= output_{{p}}_axis_tkeep_int; temp_{{p}}_axis_tlast_reg <= output_{{p}}_axis_tlast_int; temp_{{p}}_axis_tdest_reg <= output_{{p}}_axis_tdest_int; temp_{{p}}_axis_tuser_reg <= output_{{p}}_axis_tuser_int; end end {% endfor %} endmodule """) output_file.write(t.render( m=m, n=n, cm=cm, cn=cn, name=name )) print("Done") if __name__ == "__main__": main()