#!/usr/bin/env python """ Generates an AXI Stream demux with the specified number of ports """ from __future__ import print_function import argparse import math from jinja2 import Template def main(): parser = argparse.ArgumentParser(description=__doc__.strip()) parser.add_argument('-p', '--ports', type=int, default=4, help="number of ports") parser.add_argument('-n', '--name', type=str, help="module name") parser.add_argument('-o', '--output', type=str, help="output file name") args = parser.parse_args() try: generate(**args.__dict__) except IOError as ex: print(ex) exit(1) def generate(ports=4, name=None, output=None): if name is None: name = "axis_demux_{0}".format(ports) if output is None: output = name + ".v" print("Opening file '{0}'...".format(output)) output_file = open(output, 'w') print("Generating {0} port AXI Stream demux {1}...".format(ports, name)) select_width = int(math.ceil(math.log(ports, 2))) t = Template(u"""/* Copyright (c) 2014-2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4-Stream {{n}} port demultiplexer */ module {{name}} # ( parameter DATA_WIDTH = 8, parameter KEEP_ENABLE = (DATA_WIDTH>8), parameter KEEP_WIDTH = (DATA_WIDTH/8), parameter ID_ENABLE = 0, parameter ID_WIDTH = 8, parameter DEST_ENABLE = 0, parameter DEST_WIDTH = 8, parameter USER_ENABLE = 1, parameter USER_WIDTH = 1 ) ( input wire clk, input wire rst, /* * AXI input */ input wire [DATA_WIDTH-1:0] input_axis_tdata, input wire [KEEP_WIDTH-1:0] input_axis_tkeep, input wire input_axis_tvalid, output wire input_axis_tready, input wire input_axis_tlast, input wire [ID_WIDTH-1:0] input_axis_tid, input wire [DEST_WIDTH-1:0] input_axis_tdest, input wire [USER_WIDTH-1:0] input_axis_tuser, /* * AXI outputs */ {%- for p in ports %} output wire [DATA_WIDTH-1:0] output_{{p}}_axis_tdata, output wire [KEEP_WIDTH-1:0] output_{{p}}_axis_tkeep, output wire output_{{p}}_axis_tvalid, input wire output_{{p}}_axis_tready, output wire output_{{p}}_axis_tlast, output wire [ID_WIDTH-1:0] output_{{p}}_axis_tid, output wire [DEST_WIDTH-1:0] output_{{p}}_axis_tdest, output wire [USER_WIDTH-1:0] output_{{p}}_axis_tuser, {% endfor %} /* * Control */ input wire enable, input wire [{{w-1}}:0] select ); reg [{{w-1}}:0] select_reg = {{w}}'d0, select_next; reg frame_reg = 1'b0, frame_next; reg input_axis_tready_reg = 1'b0, input_axis_tready_next; // internal datapath reg [DATA_WIDTH-1:0] output_axis_tdata_int; reg [KEEP_WIDTH-1:0] output_axis_tkeep_int; reg output_axis_tvalid_int; reg output_axis_tready_int_reg = 1'b0; reg output_axis_tlast_int; reg [ID_WIDTH-1:0] output_axis_tid_int; reg [DEST_WIDTH-1:0] output_axis_tdest_int; reg [USER_WIDTH-1:0] output_axis_tuser_int; wire output_axis_tready_int_early; assign input_axis_tready = input_axis_tready_reg; // mux for output control signals reg current_output_tready; reg current_output_tvalid; always @* begin case (select_reg) {%- for p in ports %} {{w}}'d{{p}}: begin current_output_tvalid = output_{{p}}_axis_tvalid; current_output_tready = output_{{p}}_axis_tready; end {%- endfor %} default: begin current_output_tvalid = 1'b0; current_output_tready = 1'b0; end endcase end always @* begin select_next = select_reg; frame_next = frame_reg; input_axis_tready_next = 1'b0; if (input_axis_tvalid & input_axis_tready) begin // end of frame detection if (input_axis_tlast) begin frame_next = 1'b0; end end if (~frame_reg & enable & input_axis_tvalid & ~current_output_tvalid) begin // start of frame, grab select value frame_next = 1'b1; select_next = select; end input_axis_tready_next = output_axis_tready_int_early & frame_next; output_axis_tdata_int = input_axis_tdata; output_axis_tkeep_int = input_axis_tkeep; output_axis_tvalid_int = input_axis_tvalid & input_axis_tready; output_axis_tlast_int = input_axis_tlast; output_axis_tid_int = input_axis_tid; output_axis_tdest_int = input_axis_tdest; output_axis_tuser_int = input_axis_tuser; end always @(posedge clk) begin if (rst) begin select_reg <= {{w}}'d0; frame_reg <= 1'b0; input_axis_tready_reg <= 1'b0; end else begin select_reg <= select_next; frame_reg <= frame_next; input_axis_tready_reg <= input_axis_tready_next; end end // output datapath logic reg [DATA_WIDTH-1:0] output_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] output_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; {%- for p in ports %} reg output_{{p}}_axis_tvalid_reg = 1'b0, output_{{p}}_axis_tvalid_next; {%- endfor %} reg output_axis_tlast_reg = 1'b0; reg [ID_WIDTH-1:0] output_axis_tid_reg = {ID_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] output_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] output_axis_tuser_reg = {USER_WIDTH{1'b0}}; reg [DATA_WIDTH-1:0] temp_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] temp_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg temp_axis_tvalid_reg = 1'b0, temp_axis_tvalid_next; reg temp_axis_tlast_reg = 1'b0; reg [ID_WIDTH-1:0] temp_axis_tid_reg = {ID_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] temp_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] temp_axis_tuser_reg = {USER_WIDTH{1'b0}}; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_axis_temp_to_output; {% for p in ports %} assign output_{{p}}_axis_tdata = output_axis_tdata_reg; assign output_{{p}}_axis_tkeep = KEEP_ENABLE ? output_axis_tkeep_reg : {KEEP_WIDTH{1'b1}}; assign output_{{p}}_axis_tvalid = output_{{p}}_axis_tvalid_reg; assign output_{{p}}_axis_tlast = output_axis_tlast_reg; assign output_{{p}}_axis_tid = ID_ENABLE ? output_axis_tid_reg : {ID_WIDTH{1'b0}}; assign output_{{p}}_axis_tdest = DEST_ENABLE ? output_axis_tdest_reg : {DEST_WIDTH{1'b0}}; assign output_{{p}}_axis_tuser = USER_ENABLE ? output_axis_tuser_int : {USER_WIDTH{1'b0}}; {% endfor %} // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign output_axis_tready_int_early = current_output_tready | (~temp_axis_tvalid_reg & (~current_output_tvalid | ~output_axis_tvalid_int)); always @* begin // transfer sink ready state to source {%- for p in ports %} output_{{p}}_axis_tvalid_next = output_{{p}}_axis_tvalid_reg; {%- endfor %} temp_axis_tvalid_next = temp_axis_tvalid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_temp_to_output = 1'b0; if (output_axis_tready_int_reg) begin // input is ready if (current_output_tready | ~current_output_tvalid) begin // output is ready or currently not valid, transfer data to output {%- for p in ports %} output_{{p}}_axis_tvalid_next = output_axis_tvalid_int & (select_reg == {{w}}'d{{p}}); {%- endfor %} store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_axis_tvalid_next = output_axis_tvalid_int; store_axis_int_to_temp = 1'b1; end end else if (current_output_tready) begin // input is not ready, but output is ready {%- for p in ports %} output_{{p}}_axis_tvalid_next = temp_axis_tvalid_reg & (select_reg == {{w}}'d{{p}}); {%- endfor %} temp_axis_tvalid_next = 1'b0; store_axis_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin {%- for p in ports %} output_{{p}}_axis_tvalid_reg <= 1'b0; {%- endfor %} output_axis_tready_int_reg <= 1'b0; temp_axis_tvalid_reg <= 1'b0; end else begin {%- for p in ports %} output_{{p}}_axis_tvalid_reg <= output_{{p}}_axis_tvalid_next; {%- endfor %} output_axis_tready_int_reg <= output_axis_tready_int_early; temp_axis_tvalid_reg <= temp_axis_tvalid_next; end // datapath if (store_axis_int_to_output) begin output_axis_tdata_reg <= output_axis_tdata_int; output_axis_tkeep_reg <= output_axis_tkeep_int; output_axis_tlast_reg <= output_axis_tlast_int; output_axis_tid_reg <= output_axis_tid_int; output_axis_tdest_reg <= output_axis_tdest_int; output_axis_tuser_reg <= output_axis_tuser_int; end else if (store_axis_temp_to_output) begin output_axis_tdata_reg <= temp_axis_tdata_reg; output_axis_tkeep_reg <= temp_axis_tkeep_reg; output_axis_tlast_reg <= temp_axis_tlast_reg; output_axis_tid_reg <= temp_axis_tid_reg; output_axis_tdest_reg <= temp_axis_tdest_reg; output_axis_tuser_reg <= temp_axis_tuser_reg; end if (store_axis_int_to_temp) begin temp_axis_tdata_reg <= output_axis_tdata_int; temp_axis_tkeep_reg <= output_axis_tkeep_int; temp_axis_tlast_reg <= output_axis_tlast_int; temp_axis_tid_reg <= output_axis_tid_int; temp_axis_tdest_reg <= output_axis_tdest_int; temp_axis_tuser_reg <= output_axis_tuser_int; end end endmodule """) output_file.write(t.render( n=ports, w=select_width, name=name, ports=range(ports) )) print("Done") if __name__ == "__main__": main()