/* Copyright (c) 2014 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4-Stream asynchronous FIFO (64 bit datapath) */ module axis_async_fifo_64 # ( parameter ADDR_WIDTH = 12, parameter DATA_WIDTH = 64, parameter KEEP_WIDTH = (DATA_WIDTH/8) ) ( /* * Common asynchronous reset */ input wire async_rst, /* * AXI input */ input wire input_clk, input wire [DATA_WIDTH-1:0] input_axis_tdata, input wire [KEEP_WIDTH-1:0] input_axis_tkeep, input wire input_axis_tvalid, output wire input_axis_tready, input wire input_axis_tlast, input wire input_axis_tuser, /* * AXI output */ input wire output_clk, output wire [DATA_WIDTH-1:0] output_axis_tdata, output wire [KEEP_WIDTH-1:0] output_axis_tkeep, output wire output_axis_tvalid, input wire output_axis_tready, output wire output_axis_tlast, output wire output_axis_tuser ); reg [ADDR_WIDTH:0] wr_ptr = {ADDR_WIDTH+1{1'b0}}, wr_ptr_next; reg [ADDR_WIDTH:0] wr_ptr_gray = {ADDR_WIDTH+1{1'b0}}; reg [ADDR_WIDTH:0] rd_ptr = {ADDR_WIDTH+1{1'b0}}, rd_ptr_next; reg [ADDR_WIDTH:0] rd_ptr_gray = {ADDR_WIDTH+1{1'b0}}; reg [ADDR_WIDTH:0] wr_ptr_gray_sync1 = {ADDR_WIDTH+1{1'b0}}; reg [ADDR_WIDTH:0] wr_ptr_gray_sync2 = {ADDR_WIDTH+1{1'b0}}; reg [ADDR_WIDTH:0] rd_ptr_gray_sync1 = {ADDR_WIDTH+1{1'b0}}; reg [ADDR_WIDTH:0] rd_ptr_gray_sync2 = {ADDR_WIDTH+1{1'b0}}; reg input_rst_sync1 = 1; reg input_rst_sync2 = 1; reg input_rst_sync3 = 1; reg output_rst_sync1 = 1; reg output_rst_sync2 = 1; reg output_rst_sync3 = 1; reg [DATA_WIDTH+KEEP_WIDTH+2-1:0] data_out_reg = {1'b0, 1'b0, {KEEP_WIDTH{1'b0}}, {DATA_WIDTH{1'b0}}}; //(* RAM_STYLE="BLOCK" *) reg [DATA_WIDTH+KEEP_WIDTH+2-1:0] mem[(2**ADDR_WIDTH)-1:0]; reg output_axis_tvalid_reg = 1'b0; wire [DATA_WIDTH+KEEP_WIDTH+2-1:0] data_in = {input_axis_tlast, input_axis_tuser, input_axis_tkeep, input_axis_tdata}; // full when first TWO MSBs do NOT match, but rest matches // (gray code equivalent of first MSB different but rest same) wire full = ((wr_ptr_gray[ADDR_WIDTH] != rd_ptr_gray_sync2[ADDR_WIDTH]) && (wr_ptr_gray[ADDR_WIDTH-1] != rd_ptr_gray_sync2[ADDR_WIDTH-1]) && (wr_ptr_gray[ADDR_WIDTH-2:0] == rd_ptr_gray_sync2[ADDR_WIDTH-2:0])); // empty when pointers match exactly wire empty = rd_ptr_gray == wr_ptr_gray_sync2; wire write = input_axis_tvalid & ~full; wire read = (output_axis_tready | ~output_axis_tvalid_reg) & ~empty; assign {output_axis_tlast, output_axis_tuser, output_axis_tkeep, output_axis_tdata} = data_out_reg; assign input_axis_tready = ~full & ~input_rst_sync3; assign output_axis_tvalid = output_axis_tvalid_reg; // reset synchronization always @(posedge input_clk or posedge async_rst) begin if (async_rst) begin input_rst_sync1 <= 1; input_rst_sync2 <= 1; input_rst_sync3 <= 1; end else begin input_rst_sync1 <= 0; input_rst_sync2 <= input_rst_sync1 | output_rst_sync1; input_rst_sync3 <= input_rst_sync2; end end always @(posedge output_clk or posedge async_rst) begin if (async_rst) begin output_rst_sync1 <= 1; output_rst_sync2 <= 1; output_rst_sync3 <= 1; end else begin output_rst_sync1 <= 0; output_rst_sync2 <= output_rst_sync1; output_rst_sync3 <= output_rst_sync2; end end // write always @(posedge input_clk) begin if (input_rst_sync3) begin wr_ptr <= 0; wr_ptr_gray <= 0; end else if (write) begin mem[wr_ptr[ADDR_WIDTH-1:0]] <= data_in; wr_ptr_next = wr_ptr + 1; wr_ptr <= wr_ptr_next; wr_ptr_gray <= wr_ptr_next ^ (wr_ptr_next >> 1); end end // pointer synchronization always @(posedge input_clk) begin if (input_rst_sync3) begin rd_ptr_gray_sync1 <= 0; rd_ptr_gray_sync2 <= 0; end else begin rd_ptr_gray_sync1 <= rd_ptr_gray; rd_ptr_gray_sync2 <= rd_ptr_gray_sync1; end end // read always @(posedge output_clk) begin if (output_rst_sync3) begin rd_ptr <= 0; rd_ptr_gray <= 0; end else if (read) begin data_out_reg <= mem[rd_ptr[ADDR_WIDTH-1:0]]; rd_ptr_next = rd_ptr + 1; rd_ptr <= rd_ptr_next; rd_ptr_gray <= rd_ptr_next ^ (rd_ptr_next >> 1); end end // pointer synchronization always @(posedge output_clk) begin if (output_rst_sync3) begin wr_ptr_gray_sync1 <= 0; wr_ptr_gray_sync2 <= 0; end else begin wr_ptr_gray_sync1 <= wr_ptr_gray; wr_ptr_gray_sync2 <= wr_ptr_gray_sync1; end end // source ready output always @(posedge output_clk) begin if (output_rst_sync3) begin output_axis_tvalid_reg <= 1'b0; end else if (output_axis_tready | ~output_axis_tvalid_reg) begin output_axis_tvalid_reg <= ~empty; end else begin output_axis_tvalid_reg <= output_axis_tvalid_reg; end end endmodule