/* Copyright (c) 2019 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4 dual port RAM */ module axi_dp_ram # ( parameter DATA_WIDTH = 32, // width of data bus in bits parameter ADDR_WIDTH = 16, // width of address bus in bits parameter STRB_WIDTH = (DATA_WIDTH/8), parameter ID_WIDTH = 8, parameter A_PIPELINE_OUTPUT = 0, parameter B_PIPELINE_OUTPUT = 0, parameter A_INTERLEAVE = 0, parameter B_INTERLEAVE = 0 ) ( input wire a_clk, input wire a_rst, input wire b_clk, input wire b_rst, input wire [ID_WIDTH-1:0] s_axi_a_awid, input wire [ADDR_WIDTH-1:0] s_axi_a_awaddr, input wire [7:0] s_axi_a_awlen, input wire [2:0] s_axi_a_awsize, input wire [1:0] s_axi_a_awburst, input wire s_axi_a_awlock, input wire [3:0] s_axi_a_awcache, input wire [2:0] s_axi_a_awprot, input wire s_axi_a_awvalid, output wire s_axi_a_awready, input wire [DATA_WIDTH-1:0] s_axi_a_wdata, input wire [STRB_WIDTH-1:0] s_axi_a_wstrb, input wire s_axi_a_wlast, input wire s_axi_a_wvalid, output wire s_axi_a_wready, output wire [ID_WIDTH-1:0] s_axi_a_bid, output wire [1:0] s_axi_a_bresp, output wire s_axi_a_bvalid, input wire s_axi_a_bready, input wire [ID_WIDTH-1:0] s_axi_a_arid, input wire [ADDR_WIDTH-1:0] s_axi_a_araddr, input wire [7:0] s_axi_a_arlen, input wire [2:0] s_axi_a_arsize, input wire [1:0] s_axi_a_arburst, input wire s_axi_a_arlock, input wire [3:0] s_axi_a_arcache, input wire [2:0] s_axi_a_arprot, input wire s_axi_a_arvalid, output wire s_axi_a_arready, output wire [ID_WIDTH-1:0] s_axi_a_rid, output wire [DATA_WIDTH-1:0] s_axi_a_rdata, output wire [1:0] s_axi_a_rresp, output wire s_axi_a_rlast, output wire s_axi_a_rvalid, input wire s_axi_a_rready, input wire [ID_WIDTH-1:0] s_axi_b_awid, input wire [ADDR_WIDTH-1:0] s_axi_b_awaddr, input wire [7:0] s_axi_b_awlen, input wire [2:0] s_axi_b_awsize, input wire [1:0] s_axi_b_awburst, input wire s_axi_b_awlock, input wire [3:0] s_axi_b_awcache, input wire [2:0] s_axi_b_awprot, input wire s_axi_b_awvalid, output wire s_axi_b_awready, input wire [DATA_WIDTH-1:0] s_axi_b_wdata, input wire [STRB_WIDTH-1:0] s_axi_b_wstrb, input wire s_axi_b_wlast, input wire s_axi_b_wvalid, output wire s_axi_b_wready, output wire [ID_WIDTH-1:0] s_axi_b_bid, output wire [1:0] s_axi_b_bresp, output wire s_axi_b_bvalid, input wire s_axi_b_bready, input wire [ID_WIDTH-1:0] s_axi_b_arid, input wire [ADDR_WIDTH-1:0] s_axi_b_araddr, input wire [7:0] s_axi_b_arlen, input wire [2:0] s_axi_b_arsize, input wire [1:0] s_axi_b_arburst, input wire s_axi_b_arlock, input wire [3:0] s_axi_b_arcache, input wire [2:0] s_axi_b_arprot, input wire s_axi_b_arvalid, output wire s_axi_b_arready, output wire [ID_WIDTH-1:0] s_axi_b_rid, output wire [DATA_WIDTH-1:0] s_axi_b_rdata, output wire [1:0] s_axi_b_rresp, output wire s_axi_b_rlast, output wire s_axi_b_rvalid, input wire s_axi_b_rready ); parameter VALID_ADDR_WIDTH = ADDR_WIDTH - $clog2(STRB_WIDTH); parameter WORD_WIDTH = STRB_WIDTH; parameter WORD_SIZE = DATA_WIDTH/WORD_WIDTH; // bus width assertions initial begin if (WORD_SIZE * STRB_WIDTH != DATA_WIDTH) begin $error("Error: AXI data width not evenly divisble"); $finish; end if (2**$clog2(WORD_WIDTH) != WORD_WIDTH) begin $error("Error: AXI word width must be even power of two"); $finish; end end wire [ID_WIDTH-1:0] ram_a_cmd_id; wire [ADDR_WIDTH-1:0] ram_a_cmd_addr; wire [DATA_WIDTH-1:0] ram_a_cmd_wr_data; wire [STRB_WIDTH-1:0] ram_a_cmd_wr_strb; wire ram_a_cmd_wr_en; wire ram_a_cmd_rd_en; wire ram_a_cmd_last; reg ram_a_cmd_ready_reg = 1'b1; reg [ID_WIDTH-1:0] ram_a_rd_resp_id_reg = {ID_WIDTH{1'b0}}; reg [DATA_WIDTH-1:0] ram_a_rd_resp_data_reg = {DATA_WIDTH{1'b0}}; reg ram_a_rd_resp_last_reg = 1'b0; reg ram_a_rd_resp_valid_reg = 1'b0; wire ram_a_rd_resp_ready; wire [ID_WIDTH-1:0] ram_b_cmd_id; wire [ADDR_WIDTH-1:0] ram_b_cmd_addr; wire [DATA_WIDTH-1:0] ram_b_cmd_wr_data; wire [STRB_WIDTH-1:0] ram_b_cmd_wr_strb; wire ram_b_cmd_wr_en; wire ram_b_cmd_rd_en; wire ram_b_cmd_last; reg ram_b_cmd_ready_reg = 1'b1; reg [ID_WIDTH-1:0] ram_b_rd_resp_id_reg = {ID_WIDTH{1'b0}}; reg [DATA_WIDTH-1:0] ram_b_rd_resp_data_reg = {DATA_WIDTH{1'b0}}; reg ram_b_rd_resp_last_reg = 1'b0; reg ram_b_rd_resp_valid_reg = 1'b0; wire ram_b_rd_resp_ready; axi_ram_wr_rd_if #( .DATA_WIDTH(DATA_WIDTH), .ADDR_WIDTH(ADDR_WIDTH), .STRB_WIDTH(STRB_WIDTH), .ID_WIDTH(ID_WIDTH), .AWUSER_ENABLE(0), .WUSER_ENABLE(0), .BUSER_ENABLE(0), .ARUSER_ENABLE(0), .RUSER_ENABLE(0), .PIPELINE_OUTPUT(A_PIPELINE_OUTPUT), .INTERLEAVE(A_INTERLEAVE) ) a_if ( .clk(a_clk), .rst(a_rst), /* * AXI slave interface */ .s_axi_awid(s_axi_a_awid), .s_axi_awaddr(s_axi_a_awaddr), .s_axi_awlen(s_axi_a_awlen), .s_axi_awsize(s_axi_a_awsize), .s_axi_awburst(s_axi_a_awburst), .s_axi_awlock(s_axi_a_awlock), .s_axi_awcache(s_axi_a_awcache), .s_axi_awprot(s_axi_a_awprot), .s_axi_awqos(4'd0), .s_axi_awregion(4'd0), .s_axi_awuser(0), .s_axi_awvalid(s_axi_a_awvalid), .s_axi_awready(s_axi_a_awready), .s_axi_wdata(s_axi_a_wdata), .s_axi_wstrb(s_axi_a_wstrb), .s_axi_wlast(s_axi_a_wlast), .s_axi_wuser(0), .s_axi_wvalid(s_axi_a_wvalid), .s_axi_wready(s_axi_a_wready), .s_axi_bid(s_axi_a_bid), .s_axi_bresp(s_axi_a_bresp), .s_axi_buser(), .s_axi_bvalid(s_axi_a_bvalid), .s_axi_bready(s_axi_a_bready), .s_axi_arid(s_axi_a_arid), .s_axi_araddr(s_axi_a_araddr), .s_axi_arlen(s_axi_a_arlen), .s_axi_arsize(s_axi_a_arsize), .s_axi_arburst(s_axi_a_arburst), .s_axi_arlock(s_axi_a_arlock), .s_axi_arcache(s_axi_a_arcache), .s_axi_arprot(s_axi_a_arprot), .s_axi_arqos(4'd0), .s_axi_arregion(4'd0), .s_axi_aruser(0), .s_axi_arvalid(s_axi_a_arvalid), .s_axi_arready(s_axi_a_arready), .s_axi_rid(s_axi_a_rid), .s_axi_rdata(s_axi_a_rdata), .s_axi_rresp(s_axi_a_rresp), .s_axi_rlast(s_axi_a_rlast), .s_axi_ruser(), .s_axi_rvalid(s_axi_a_rvalid), .s_axi_rready(s_axi_a_rready), /* * RAM interface */ .ram_cmd_id(ram_a_cmd_id), .ram_cmd_addr(ram_a_cmd_addr), .ram_cmd_lock(), .ram_cmd_cache(), .ram_cmd_prot(), .ram_cmd_qos(), .ram_cmd_region(), .ram_cmd_auser(), .ram_cmd_wr_data(ram_a_cmd_wr_data), .ram_cmd_wr_strb(ram_a_cmd_wr_strb), .ram_cmd_wr_user(), .ram_cmd_wr_en(ram_a_cmd_wr_en), .ram_cmd_rd_en(ram_a_cmd_rd_en), .ram_cmd_last(ram_a_cmd_last), .ram_cmd_ready(ram_a_cmd_ready_reg), .ram_rd_resp_id(ram_a_rd_resp_id_reg), .ram_rd_resp_data(ram_a_rd_resp_data_reg), .ram_rd_resp_last(ram_a_rd_resp_last_reg), .ram_rd_resp_user(0), .ram_rd_resp_valid(ram_a_rd_resp_valid_reg), .ram_rd_resp_ready(ram_a_rd_resp_ready) ); axi_ram_wr_rd_if #( .DATA_WIDTH(DATA_WIDTH), .ADDR_WIDTH(ADDR_WIDTH), .STRB_WIDTH(STRB_WIDTH), .ID_WIDTH(ID_WIDTH), .AWUSER_ENABLE(0), .WUSER_ENABLE(0), .BUSER_ENABLE(0), .ARUSER_ENABLE(0), .RUSER_ENABLE(0), .PIPELINE_OUTPUT(B_PIPELINE_OUTPUT), .INTERLEAVE(B_INTERLEAVE) ) b_if ( .clk(b_clk), .rst(b_rst), /* * AXI slave interface */ .s_axi_awid(s_axi_b_awid), .s_axi_awaddr(s_axi_b_awaddr), .s_axi_awlen(s_axi_b_awlen), .s_axi_awsize(s_axi_b_awsize), .s_axi_awburst(s_axi_b_awburst), .s_axi_awlock(s_axi_b_awlock), .s_axi_awcache(s_axi_b_awcache), .s_axi_awprot(s_axi_b_awprot), .s_axi_awqos(4'd0), .s_axi_awregion(4'd0), .s_axi_awuser(0), .s_axi_awvalid(s_axi_b_awvalid), .s_axi_awready(s_axi_b_awready), .s_axi_wdata(s_axi_b_wdata), .s_axi_wstrb(s_axi_b_wstrb), .s_axi_wlast(s_axi_b_wlast), .s_axi_wuser(0), .s_axi_wvalid(s_axi_b_wvalid), .s_axi_wready(s_axi_b_wready), .s_axi_bid(s_axi_b_bid), .s_axi_bresp(s_axi_b_bresp), .s_axi_buser(), .s_axi_bvalid(s_axi_b_bvalid), .s_axi_bready(s_axi_b_bready), .s_axi_arid(s_axi_b_arid), .s_axi_araddr(s_axi_b_araddr), .s_axi_arlen(s_axi_b_arlen), .s_axi_arsize(s_axi_b_arsize), .s_axi_arburst(s_axi_b_arburst), .s_axi_arlock(s_axi_b_arlock), .s_axi_arcache(s_axi_b_arcache), .s_axi_arprot(s_axi_b_arprot), .s_axi_arqos(4'd0), .s_axi_arregion(4'd0), .s_axi_aruser(0), .s_axi_arvalid(s_axi_b_arvalid), .s_axi_arready(s_axi_b_arready), .s_axi_rid(s_axi_b_rid), .s_axi_rdata(s_axi_b_rdata), .s_axi_rresp(s_axi_b_rresp), .s_axi_rlast(s_axi_b_rlast), .s_axi_ruser(), .s_axi_rvalid(s_axi_b_rvalid), .s_axi_rready(s_axi_b_rready), /* * RAM interface */ .ram_cmd_id(ram_b_cmd_id), .ram_cmd_addr(ram_b_cmd_addr), .ram_cmd_lock(), .ram_cmd_cache(), .ram_cmd_prot(), .ram_cmd_qos(), .ram_cmd_region(), .ram_cmd_auser(), .ram_cmd_wr_data(ram_b_cmd_wr_data), .ram_cmd_wr_strb(ram_b_cmd_wr_strb), .ram_cmd_wr_user(), .ram_cmd_wr_en(ram_b_cmd_wr_en), .ram_cmd_rd_en(ram_b_cmd_rd_en), .ram_cmd_last(ram_b_cmd_last), .ram_cmd_ready(ram_b_cmd_ready_reg), .ram_rd_resp_id(ram_b_rd_resp_id_reg), .ram_rd_resp_data(ram_b_rd_resp_data_reg), .ram_rd_resp_last(ram_b_rd_resp_last_reg), .ram_rd_resp_user(0), .ram_rd_resp_valid(ram_b_rd_resp_valid_reg), .ram_rd_resp_ready(ram_b_rd_resp_ready) ); // (* RAM_STYLE="BLOCK" *) reg [DATA_WIDTH-1:0] mem[(2**VALID_ADDR_WIDTH)-1:0]; wire [VALID_ADDR_WIDTH-1:0] addr_a_valid = ram_a_cmd_addr >> (ADDR_WIDTH - VALID_ADDR_WIDTH); wire [VALID_ADDR_WIDTH-1:0] addr_b_valid = ram_b_cmd_addr >> (ADDR_WIDTH - VALID_ADDR_WIDTH); integer i, j; initial begin // two nested loops for smaller number of iterations per loop // workaround for synthesizer complaints about large loop counts for (i = 0; i < 2**ADDR_WIDTH; i = i + 2**(ADDR_WIDTH/2)) begin for (j = i; j < i + 2**(ADDR_WIDTH/2); j = j + 1) begin mem[j] = 0; end end end always @(posedge a_clk) begin ram_a_rd_resp_valid_reg <= ram_a_rd_resp_valid_reg && !ram_a_rd_resp_ready; ram_a_cmd_ready_reg <= !ram_a_rd_resp_valid_reg || ram_a_rd_resp_ready; if (ram_a_cmd_ready_reg && ram_a_cmd_rd_en) begin ram_a_rd_resp_id_reg <= ram_a_cmd_id; ram_a_rd_resp_data_reg <= mem[addr_a_valid]; ram_a_rd_resp_last_reg <= ram_a_cmd_last; ram_a_rd_resp_valid_reg <= 1'b1; ram_a_cmd_ready_reg <= ram_a_rd_resp_ready; end else if (ram_a_cmd_ready_reg && ram_a_cmd_wr_en) begin for (i = 0; i < WORD_WIDTH; i = i + 1) begin if (ram_a_cmd_wr_strb[i]) begin mem[addr_a_valid][8*i +: 8] <= ram_a_cmd_wr_data[8*i +: 8]; end end end if (a_rst) begin ram_a_cmd_ready_reg <= 1'b1; ram_a_rd_resp_valid_reg <= 1'b0; end end always @(posedge b_clk) begin ram_b_rd_resp_valid_reg <= ram_b_rd_resp_valid_reg && !ram_b_rd_resp_ready; ram_b_cmd_ready_reg <= !ram_b_rd_resp_valid_reg || ram_b_rd_resp_ready; if (ram_b_cmd_ready_reg && ram_b_cmd_rd_en) begin ram_b_rd_resp_id_reg <= ram_b_cmd_id; ram_b_rd_resp_data_reg <= mem[addr_b_valid]; ram_b_rd_resp_last_reg <= ram_b_cmd_last; ram_b_rd_resp_valid_reg <= 1'b1; ram_b_cmd_ready_reg <= ram_b_rd_resp_ready; end else if (ram_b_cmd_ready_reg && ram_b_cmd_wr_en) begin for (i = 0; i < WORD_WIDTH; i = i + 1) begin if (ram_b_cmd_wr_strb[i]) begin mem[addr_b_valid][8*i +: 8] <= ram_b_cmd_wr_data[8*i +: 8]; end end end if (b_rst) begin ram_a_cmd_ready_reg <= 1'b1; ram_b_rd_resp_valid_reg <= 1'b0; end end endmodule