/* Copyright (c) 2014-2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4-Stream statistics counter */ module axis_stat_counter # ( parameter DATA_WIDTH = 64, parameter KEEP_ENABLE = (DATA_WIDTH>8), parameter KEEP_WIDTH = (DATA_WIDTH/8), parameter TAG_ENABLE = 1, parameter TAG_WIDTH = 16, parameter TICK_COUNT_ENABLE = 1, parameter TICK_COUNT_WIDTH = 32, parameter BYTE_COUNT_ENABLE = 1, parameter BYTE_COUNT_WIDTH = 32, parameter FRAME_COUNT_ENABLE = 1, parameter FRAME_COUNT_WIDTH = 32 ) ( input wire clk, input wire rst, /* * AXI monitor */ input wire [KEEP_WIDTH-1:0] monitor_axis_tkeep, input wire monitor_axis_tvalid, input wire monitor_axis_tready, input wire monitor_axis_tlast, /* * AXI status data output */ output wire [7:0] output_axis_tdata, output wire output_axis_tvalid, input wire output_axis_tready, output wire output_axis_tlast, output wire output_axis_tuser, /* * Configuration */ input wire [TAG_WIDTH-1:0] tag, input wire trigger, /* * Status */ output wire busy ); localparam TAG_BYTE_WIDTH = (TAG_WIDTH + 7) / 8; localparam TICK_COUNT_BYTE_WIDTH = (TICK_COUNT_WIDTH + 7) / 8; localparam BYTE_COUNT_BYTE_WIDTH = (BYTE_COUNT_WIDTH + 7) / 8; localparam FRAME_COUNT_BYTE_WIDTH = (FRAME_COUNT_WIDTH + 7) / 8; localparam TOTAL_LENGTH = TAG_BYTE_WIDTH + TICK_COUNT_BYTE_WIDTH + BYTE_COUNT_BYTE_WIDTH + FRAME_COUNT_BYTE_WIDTH; // state register localparam [1:0] STATE_IDLE = 2'd0, STATE_OUTPUT_DATA = 2'd1; reg [1:0] state_reg = STATE_IDLE, state_next; reg [TICK_COUNT_WIDTH-1:0] tick_count_reg = 0, tick_count_next; reg [BYTE_COUNT_WIDTH-1:0] byte_count_reg = 0, byte_count_next; reg [FRAME_COUNT_WIDTH-1:0] frame_count_reg = 0, frame_count_next; reg frame_reg = 1'b0, frame_next; reg store_output; reg [$clog2(TOTAL_LENGTH)-1:0] frame_ptr_reg = 0, frame_ptr_next; reg [TICK_COUNT_WIDTH-1:0] tick_count_output_reg = 0; reg [BYTE_COUNT_WIDTH-1:0] byte_count_output_reg = 0; reg [FRAME_COUNT_WIDTH-1:0] frame_count_output_reg = 0; reg busy_reg = 1'b0; // internal datapath reg [7:0] output_axis_tdata_int; reg output_axis_tvalid_int; reg output_axis_tready_int_reg = 1'b0; reg output_axis_tlast_int; reg output_axis_tuser_int; wire output_axis_tready_int_early; assign busy = busy_reg; integer offset, i, bit_cnt; always @* begin state_next = STATE_IDLE; tick_count_next = tick_count_reg; byte_count_next = byte_count_reg; frame_count_next = frame_count_reg; frame_next = frame_reg; output_axis_tdata_int = 8'd0; output_axis_tvalid_int = 1'b0; output_axis_tlast_int = 1'b0; output_axis_tuser_int = 1'b0; store_output = 1'b0; frame_ptr_next = frame_ptr_reg; // data readout case (state_reg) STATE_IDLE: begin if (trigger) begin store_output = 1'b1; tick_count_next = 0; byte_count_next = 0; frame_count_next = 0; frame_ptr_next = 0; if (output_axis_tready_int_reg) begin frame_ptr_next = 1; if (TAG_ENABLE) begin output_axis_tdata_int = tag[(TAG_BYTE_WIDTH-1)*8 +: 8]; end else if (TICK_COUNT_ENABLE) begin output_axis_tdata_int = tick_count_reg[(TICK_COUNT_BYTE_WIDTH-1)*8 +: 8]; end else if (BYTE_COUNT_ENABLE) begin output_axis_tdata_int = byte_count_reg[(BYTE_COUNT_BYTE_WIDTH-1)*8 +: 8]; end else if (FRAME_COUNT_ENABLE) begin output_axis_tdata_int = frame_count_reg[(FRAME_COUNT_BYTE_WIDTH-1)*8 +: 8]; end output_axis_tvalid_int = 1'b1; end state_next = STATE_OUTPUT_DATA; end else begin state_next = STATE_IDLE; end end STATE_OUTPUT_DATA: begin if (output_axis_tready_int_reg) begin state_next = STATE_OUTPUT_DATA; frame_ptr_next = frame_ptr_reg + 1; output_axis_tvalid_int = 1'b1; offset = 0; if (TAG_ENABLE) begin for (i = TAG_BYTE_WIDTH-1; i >= 0; i = i - 1) begin if (frame_ptr_reg == offset) begin output_axis_tdata_int = tag[i*8 +: 8]; end offset = offset + 1; end end if (TICK_COUNT_ENABLE) begin for (i = TICK_COUNT_BYTE_WIDTH-1; i >= 0; i = i - 1) begin if (frame_ptr_reg == offset) begin output_axis_tdata_int = tick_count_output_reg[i*8 +: 8]; end offset = offset + 1; end end if (BYTE_COUNT_ENABLE) begin for (i = BYTE_COUNT_BYTE_WIDTH-1; i >= 0; i = i - 1) begin if (frame_ptr_reg == offset) begin output_axis_tdata_int = byte_count_output_reg[i*8 +: 8]; end offset = offset + 1; end end if (FRAME_COUNT_ENABLE) begin for (i = FRAME_COUNT_BYTE_WIDTH-1; i >= 0; i = i - 1) begin if (frame_ptr_reg == offset) begin output_axis_tdata_int = frame_count_output_reg[i*8 +: 8]; end offset = offset + 1; end end if (frame_ptr_reg == offset-1) begin output_axis_tlast_int = 1'b1; state_next = STATE_IDLE; end end else begin state_next = STATE_OUTPUT_DATA; end end endcase // stats collection // increment tick count by number of words that can be transferred per cycle tick_count_next = tick_count_next + (KEEP_ENABLE ? KEEP_WIDTH : 1); if (monitor_axis_tready & monitor_axis_tvalid) begin // valid transfer cycle // increment byte count by number of words transferred if (KEEP_ENABLE) begin bit_cnt = 0; for (i = 0; i <= KEEP_WIDTH; i = i + 1) begin //bit_cnt = bit_cnt + monitor_axis_tkeep[i]; if (monitor_axis_tkeep == ({KEEP_WIDTH{1'b1}}) >> (KEEP_WIDTH-i)) bit_cnt = i; end byte_count_next = byte_count_next + bit_cnt; end else begin byte_count_next = byte_count_next + 1; end // count frames if (monitor_axis_tlast) begin // end of frame frame_next = 1'b0; end else if (~frame_reg) begin // first word after end of frame frame_count_next = frame_count_next + 1; frame_next = 1'b1; end end end always @(posedge clk) begin if (rst) begin state_reg <= STATE_IDLE; tick_count_reg <= 0; byte_count_reg <= 0; frame_count_reg <= 0; frame_reg <= 1'b0; frame_ptr_reg <= 0; busy_reg <= 1'b0; end else begin state_reg <= state_next; tick_count_reg <= tick_count_next; byte_count_reg <= byte_count_next; frame_count_reg <= frame_count_next; frame_reg <= frame_next; frame_ptr_reg <= frame_ptr_next; busy_reg <= state_next != STATE_IDLE; end if (store_output) begin tick_count_output_reg <= tick_count_reg; byte_count_output_reg <= byte_count_reg; frame_count_output_reg <= frame_count_reg; end end // output datapath logic reg [7:0] output_axis_tdata_reg = 8'd0; reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next; reg output_axis_tlast_reg = 1'b0; reg output_axis_tuser_reg = 1'b0; reg [7:0] temp_axis_tdata_reg = 8'd0; reg temp_axis_tvalid_reg = 1'b0, temp_axis_tvalid_next; reg temp_axis_tlast_reg = 1'b0; reg temp_axis_tuser_reg = 1'b0; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_axis_temp_to_output; assign output_axis_tdata = output_axis_tdata_reg; assign output_axis_tvalid = output_axis_tvalid_reg; assign output_axis_tlast = output_axis_tlast_reg; assign output_axis_tuser = output_axis_tuser_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign output_axis_tready_int_early = output_axis_tready | (~temp_axis_tvalid_reg & (~output_axis_tvalid_reg | ~output_axis_tvalid_int)); always @* begin // transfer sink ready state to source output_axis_tvalid_next = output_axis_tvalid_reg; temp_axis_tvalid_next = temp_axis_tvalid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_temp_to_output = 1'b0; if (output_axis_tready_int_reg) begin // input is ready if (output_axis_tready | ~output_axis_tvalid_reg) begin // output is ready or currently not valid, transfer data to output output_axis_tvalid_next = output_axis_tvalid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_axis_tvalid_next = output_axis_tvalid_int; store_axis_int_to_temp = 1'b1; end end else if (output_axis_tready) begin // input is not ready, but output is ready output_axis_tvalid_next = temp_axis_tvalid_reg; temp_axis_tvalid_next = 1'b0; store_axis_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin output_axis_tvalid_reg <= 1'b0; output_axis_tready_int_reg <= 1'b0; temp_axis_tvalid_reg <= 1'b0; end else begin output_axis_tvalid_reg <= output_axis_tvalid_next; output_axis_tready_int_reg <= output_axis_tready_int_early; temp_axis_tvalid_reg <= temp_axis_tvalid_next; end // datapath if (store_axis_int_to_output) begin output_axis_tdata_reg <= output_axis_tdata_int; output_axis_tlast_reg <= output_axis_tlast_int; output_axis_tuser_reg <= output_axis_tuser_int; end else if (store_axis_temp_to_output) begin output_axis_tdata_reg <= temp_axis_tdata_reg; output_axis_tlast_reg <= temp_axis_tlast_reg; output_axis_tuser_reg <= temp_axis_tuser_reg; end if (store_axis_int_to_temp) begin temp_axis_tdata_reg <= output_axis_tdata_int; temp_axis_tlast_reg <= output_axis_tlast_int; temp_axis_tuser_reg <= output_axis_tuser_int; end end endmodule