/* Copyright (c) 2016-2023 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * Parametrizable combinatorial parallel LFSR/CRC */ module lfsr # ( // width of LFSR parameter LFSR_WIDTH = 31, // LFSR polynomial parameter LFSR_POLY = 31'h10000001, // LFSR configuration: "GALOIS", "FIBONACCI" parameter LFSR_CONFIG = "FIBONACCI", // LFSR feed forward enable parameter LFSR_FEED_FORWARD = 0, // bit-reverse input and output parameter REVERSE = 0, // width of data input parameter DATA_WIDTH = 8, // implementation style: "AUTO", "LOOP", "REDUCTION" parameter STYLE = "AUTO" ) ( input wire [DATA_WIDTH-1:0] data_in, input wire [LFSR_WIDTH-1:0] state_in, output wire [DATA_WIDTH-1:0] data_out, output wire [LFSR_WIDTH-1:0] state_out ); /* Fully parametrizable combinatorial parallel LFSR/CRC module. Implements an unrolled LFSR next state computation, shifting DATA_WIDTH bits per pass through the module. Input data is XORed with LFSR feedback path, tie data_in to zero if this is not required. Works in two parts: statically computes a set of bit masks, then uses these bit masks to select bits for XORing to compute the next state. Ports: data_in Data bits to be shifted through the LFSR (DATA_WIDTH bits) state_in LFSR/CRC current state input (LFSR_WIDTH bits) data_out Data bits shifted out of LFSR (DATA_WIDTH bits) state_out LFSR/CRC next state output (LFSR_WIDTH bits) Parameters: LFSR_WIDTH Specify width of LFSR/CRC register LFSR_POLY Specify the LFSR/CRC polynomial in hex format. For example, the polynomial x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1 would be represented as 32'h04c11db7 Note that the largest term (x^32) is suppressed. This term is generated automatically based on LFSR_WIDTH. LFSR_CONFIG Specify the LFSR configuration, either Fibonacci or Galois. Fibonacci is generally used for linear-feedback shift registers (LFSR) for pseudorandom binary sequence (PRBS) generators, scramblers, and descrambers, while Galois is generally used for cyclic redundancy check generators and checkers. Fibonacci style (example for 64b66b scrambler, 0x8000000001) DIN (LSB first) | V (+)<---------------------------(+)<-----------------------------. | ^ | | .----. .----. .----. | .----. .----. .----. | +->| 0 |->| 1 |->...->| 38 |-+->| 39 |->...->| 56 |->| 57 |--' | '----' '----' '----' '----' '----' '----' V DOUT Galois style (example for CRC16, 0x8005) ,-------------------+-------------------------+----------(+)<-- DIN (MSB first) | | | ^ | .----. .----. V .----. .----. V .----. | `->| 0 |->| 1 |->(+)->| 2 |->...->| 14 |->(+)->| 15 |--+---> DOUT '----' '----' '----' '----' '----' LFSR_FEED_FORWARD Generate feed forward instead of feed back LFSR. Enable this for PRBS checking and self- synchronous descrambling. Fibonacci feed-forward style (example for 64b66b descrambler, 0x8000000001) DIN (LSB first) | | .----. .----. .----. .----. .----. .----. +->| 0 |->| 1 |->...->| 38 |-+->| 39 |->...->| 56 |->| 57 |--. | '----' '----' '----' | '----' '----' '----' | | V | (+)<---------------------------(+)------------------------------' | V DOUT Galois feed-forward style ,-------------------+-------------------------+------------+--- DIN (MSB first) | | | | | .----. .----. V .----. .----. V .----. V `->| 0 |->| 1 |->(+)->| 2 |->...->| 14 |->(+)->| 15 |->(+)-> DOUT '----' '----' '----' '----' '----' REVERSE Bit-reverse LFSR input and output. Shifts MSB first by default, set REVERSE for LSB first. DATA_WIDTH Specify width of input and output data bus. The module will perform one shift per input data bit, so if the input data bus is not required tie data_in to zero and set DATA_WIDTH to the required number of shifts per clock cycle. STYLE Specify implementation style. Can be "AUTO", "LOOP", or "REDUCTION". When "AUTO" is selected, implemenation will be "LOOP" or "REDUCTION" based on synthesis translate directives. "REDUCTION" and "LOOP" are functionally identical, however they simulate and synthesize differently. "REDUCTION" is implemented with a loop over a Verilog reduction operator. "LOOP" is implemented as a doubly-nested loop with no reduction operator. "REDUCTION" is very fast for simulation in iverilog and synthesizes well in Quartus but synthesizes poorly in ISE, likely due to large inferred XOR gates causing problems with the optimizer. "LOOP" synthesizes will in both ISE and Quartus. "AUTO" will default to "REDUCTION" when simulating and "LOOP" for synthesizers that obey synthesis translate directives. Settings for common LFSR/CRC implementations: Name Configuration Length Polynomial Initial value Notes CRC16-IBM Galois, bit-reverse 16 16'h8005 16'hffff CRC16-CCITT Galois 16 16'h1021 16'h1d0f CRC32 Galois, bit-reverse 32 32'h04c11db7 32'hffffffff Ethernet FCS; invert final output CRC32C Galois, bit-reverse 32 32'h1edc6f41 32'hffffffff iSCSI, Intel CRC32 instruction; invert final output PRBS6 Fibonacci 6 6'h21 any PRBS7 Fibonacci 7 7'h41 any PRBS9 Fibonacci 9 9'h021 any ITU V.52 PRBS10 Fibonacci 10 10'h081 any ITU PRBS11 Fibonacci 11 11'h201 any ITU O.152 PRBS15 Fibonacci, inverted 15 15'h4001 any ITU O.152 PRBS17 Fibonacci 17 17'h04001 any PRBS20 Fibonacci 20 20'h00009 any ITU V.57 PRBS23 Fibonacci, inverted 23 23'h040001 any ITU O.151 PRBS29 Fibonacci, inverted 29 29'h08000001 any PRBS31 Fibonacci, inverted 31 31'h10000001 any 64b66b Fibonacci, bit-reverse 58 58'h8000000001 any 10G Ethernet 128b130b Galois, bit-reverse 23 23'h210125 any PCIe gen 3 */ function [LFSR_WIDTH+DATA_WIDTH-1:0] lfsr_mask(input [31:0] index); reg [LFSR_WIDTH-1:0] lfsr_mask_state[LFSR_WIDTH-1:0]; reg [DATA_WIDTH-1:0] lfsr_mask_data[LFSR_WIDTH-1:0]; reg [LFSR_WIDTH-1:0] output_mask_state[DATA_WIDTH-1:0]; reg [DATA_WIDTH-1:0] output_mask_data[DATA_WIDTH-1:0]; reg [LFSR_WIDTH-1:0] state_val; reg [DATA_WIDTH-1:0] data_val; reg [DATA_WIDTH-1:0] data_mask; integer i, j; begin // init bit masks for (i = 0; i < LFSR_WIDTH; i = i + 1) begin lfsr_mask_state[i] = 0; lfsr_mask_state[i][i] = 1'b1; lfsr_mask_data[i] = 0; end for (i = 0; i < DATA_WIDTH; i = i + 1) begin output_mask_state[i] = 0; if (i < LFSR_WIDTH) begin output_mask_state[i][i] = 1'b1; end output_mask_data[i] = 0; end // simulate shift register if (LFSR_CONFIG == "FIBONACCI") begin // Fibonacci configuration for (data_mask = {1'b1, {DATA_WIDTH-1{1'b0}}}; data_mask != 0; data_mask = data_mask >> 1) begin // determine shift in value // current value in last FF, XOR with input data bit (MSB first) state_val = lfsr_mask_state[LFSR_WIDTH-1]; data_val = lfsr_mask_data[LFSR_WIDTH-1]; data_val = data_val ^ data_mask; // add XOR inputs from correct indicies for (j = 1; j < LFSR_WIDTH; j = j + 1) begin if ((LFSR_POLY >> j) & 1) begin state_val = lfsr_mask_state[j-1] ^ state_val; data_val = lfsr_mask_data[j-1] ^ data_val; end end // shift for (j = LFSR_WIDTH-1; j > 0; j = j - 1) begin lfsr_mask_state[j] = lfsr_mask_state[j-1]; lfsr_mask_data[j] = lfsr_mask_data[j-1]; end for (j = DATA_WIDTH-1; j > 0; j = j - 1) begin output_mask_state[j] = output_mask_state[j-1]; output_mask_data[j] = output_mask_data[j-1]; end output_mask_state[0] = state_val; output_mask_data[0] = data_val; if (LFSR_FEED_FORWARD) begin // only shift in new input data state_val = {LFSR_WIDTH{1'b0}}; data_val = data_mask; end lfsr_mask_state[0] = state_val; lfsr_mask_data[0] = data_val; end end else if (LFSR_CONFIG == "GALOIS") begin // Galois configuration for (data_mask = {1'b1, {DATA_WIDTH-1{1'b0}}}; data_mask != 0; data_mask = data_mask >> 1) begin // determine shift in value // current value in last FF, XOR with input data bit (MSB first) state_val = lfsr_mask_state[LFSR_WIDTH-1]; data_val = lfsr_mask_data[LFSR_WIDTH-1]; data_val = data_val ^ data_mask; // shift for (j = LFSR_WIDTH-1; j > 0; j = j - 1) begin lfsr_mask_state[j] = lfsr_mask_state[j-1]; lfsr_mask_data[j] = lfsr_mask_data[j-1]; end for (j = DATA_WIDTH-1; j > 0; j = j - 1) begin output_mask_state[j] = output_mask_state[j-1]; output_mask_data[j] = output_mask_data[j-1]; end output_mask_state[0] = state_val; output_mask_data[0] = data_val; if (LFSR_FEED_FORWARD) begin // only shift in new input data state_val = {LFSR_WIDTH{1'b0}}; data_val = data_mask; end lfsr_mask_state[0] = state_val; lfsr_mask_data[0] = data_val; // add XOR inputs at correct indicies for (j = 1; j < LFSR_WIDTH; j = j + 1) begin if ((LFSR_POLY >> j) & 1) begin lfsr_mask_state[j] = lfsr_mask_state[j] ^ state_val; lfsr_mask_data[j] = lfsr_mask_data[j] ^ data_val; end end end end else begin $error("Error: unknown configuration setting!"); $finish; end // reverse bits if selected if (REVERSE) begin if (index < LFSR_WIDTH) begin state_val = 0; for (i = 0; i < LFSR_WIDTH; i = i + 1) begin state_val[i] = lfsr_mask_state[LFSR_WIDTH-index-1][LFSR_WIDTH-i-1]; end data_val = 0; for (i = 0; i < DATA_WIDTH; i = i + 1) begin data_val[i] = lfsr_mask_data[LFSR_WIDTH-index-1][DATA_WIDTH-i-1]; end end else begin state_val = 0; for (i = 0; i < LFSR_WIDTH; i = i + 1) begin state_val[i] = output_mask_state[DATA_WIDTH-(index-LFSR_WIDTH)-1][LFSR_WIDTH-i-1]; end data_val = 0; for (i = 0; i < DATA_WIDTH; i = i + 1) begin data_val[i] = output_mask_data[DATA_WIDTH-(index-LFSR_WIDTH)-1][DATA_WIDTH-i-1]; end end end else begin if (index < LFSR_WIDTH) begin state_val = lfsr_mask_state[index]; data_val = lfsr_mask_data[index]; end else begin state_val = output_mask_state[index-LFSR_WIDTH]; data_val = output_mask_data[index-LFSR_WIDTH]; end end lfsr_mask = {data_val, state_val}; end endfunction // synthesis translate_off `define SIMULATION // synthesis translate_on `ifdef SIMULATION // "AUTO" style is "REDUCTION" for faster simulation parameter STYLE_INT = (STYLE == "AUTO") ? "REDUCTION" : STYLE; `else // "AUTO" style is "LOOP" for better synthesis result parameter STYLE_INT = (STYLE == "AUTO") ? "LOOP" : STYLE; `endif genvar n; generate if (STYLE_INT == "REDUCTION") begin // use Verilog reduction operator // fast in iverilog // significantly larger than generated code with ISE (inferred wide XORs may be tripping up optimizer) // slightly smaller than generated code with Quartus // --> better for simulation for (n = 0; n < LFSR_WIDTH; n = n + 1) begin : lfsr_state wire [LFSR_WIDTH+DATA_WIDTH-1:0] mask = lfsr_mask(n); assign state_out[n] = ^({data_in, state_in} & mask); end for (n = 0; n < DATA_WIDTH; n = n + 1) begin : lfsr_data wire [LFSR_WIDTH+DATA_WIDTH-1:0] mask = lfsr_mask(n+LFSR_WIDTH); assign data_out[n] = ^({data_in, state_in} & mask); end end else if (STYLE_INT == "LOOP") begin // use nested loops // very slow in iverilog // slightly smaller than generated code with ISE // same size as generated code with Quartus // --> better for synthesis for (n = 0; n < LFSR_WIDTH; n = n + 1) begin : lfsr_state wire [LFSR_WIDTH+DATA_WIDTH-1:0] mask = lfsr_mask(n); reg state_reg; assign state_out[n] = state_reg; integer i; always @* begin state_reg = 1'b0; for (i = 0; i < LFSR_WIDTH; i = i + 1) begin if (mask[i]) begin state_reg = state_reg ^ state_in[i]; end end for (i = 0; i < DATA_WIDTH; i = i + 1) begin if (mask[i+LFSR_WIDTH]) begin state_reg = state_reg ^ data_in[i]; end end end end for (n = 0; n < DATA_WIDTH; n = n + 1) begin : lfsr_data wire [LFSR_WIDTH+DATA_WIDTH-1:0] mask = lfsr_mask(n+LFSR_WIDTH); reg data_reg; assign data_out[n] = data_reg; integer i; always @* begin data_reg = 1'b0; for (i = 0; i < LFSR_WIDTH; i = i + 1) begin if (mask[i]) begin data_reg = data_reg ^ state_in[i]; end end for (i = 0; i < DATA_WIDTH; i = i + 1) begin if (mask[i+LFSR_WIDTH]) begin data_reg = data_reg ^ data_in[i]; end end end end end else begin initial begin $error("Error: unknown style setting!"); $finish; end end endgenerate endmodule `resetall