/* Copyright (c) 2021 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * PCIe TLP multiplexer */ module pcie_tlp_mux # ( // Input count parameter PORTS = 2, // TLP data width parameter TLP_DATA_WIDTH = 256, // TLP strobe width parameter TLP_STRB_WIDTH = TLP_DATA_WIDTH/32, // TLP header width parameter TLP_HDR_WIDTH = 128, // Sequence number width parameter SEQ_NUM_WIDTH = 6, // TLP segment count parameter TLP_SEG_COUNT = 1, // select round robin arbitration parameter ARB_TYPE_ROUND_ROBIN = 0, // LSB priority selection parameter ARB_LSB_HIGH_PRIORITY = 1 ) ( input wire clk, input wire rst, /* * TLP input */ input wire [PORTS*TLP_DATA_WIDTH-1:0] in_tlp_data, input wire [PORTS*TLP_STRB_WIDTH-1:0] in_tlp_strb, input wire [PORTS*TLP_SEG_COUNT*TLP_HDR_WIDTH-1:0] in_tlp_hdr, input wire [PORTS*TLP_SEG_COUNT*SEQ_NUM_WIDTH-1:0] in_tlp_seq, input wire [PORTS*TLP_SEG_COUNT*3-1:0] in_tlp_bar_id, input wire [PORTS*TLP_SEG_COUNT*8-1:0] in_tlp_func_num, input wire [PORTS*TLP_SEG_COUNT*4-1:0] in_tlp_error, input wire [PORTS*TLP_SEG_COUNT-1:0] in_tlp_valid, input wire [PORTS*TLP_SEG_COUNT-1:0] in_tlp_sop, input wire [PORTS*TLP_SEG_COUNT-1:0] in_tlp_eop, output wire [PORTS-1:0] in_tlp_ready, /* * TLP output */ output wire [TLP_DATA_WIDTH-1:0] out_tlp_data, output wire [TLP_STRB_WIDTH-1:0] out_tlp_strb, output wire [TLP_SEG_COUNT*TLP_HDR_WIDTH-1:0] out_tlp_hdr, output wire [TLP_SEG_COUNT*SEQ_NUM_WIDTH-1:0] out_tlp_seq, output wire [TLP_SEG_COUNT*3-1:0] out_tlp_bar_id, output wire [TLP_SEG_COUNT*8-1:0] out_tlp_func_num, output wire [TLP_SEG_COUNT*4-1:0] out_tlp_error, output wire [TLP_SEG_COUNT-1:0] out_tlp_valid, output wire [TLP_SEG_COUNT-1:0] out_tlp_sop, output wire [TLP_SEG_COUNT-1:0] out_tlp_eop, input wire out_tlp_ready, /* * Control */ input wire [PORTS-1:0] pause, /* * Status */ output wire [PORTS*TLP_SEG_COUNT*SEQ_NUM_WIDTH-1:0] sel_tlp_seq, output wire [PORTS*TLP_SEG_COUNT-1:0] sel_tlp_seq_valid ); parameter CL_PORTS = $clog2(PORTS); parameter TLP_SEG_DATA_WIDTH = TLP_DATA_WIDTH / TLP_SEG_COUNT; parameter TLP_SEG_STRB_WIDTH = TLP_STRB_WIDTH / TLP_SEG_COUNT; parameter SEG_SEL_WIDTH = $clog2(TLP_SEG_COUNT); // check configuration initial begin if (TLP_HDR_WIDTH != 128) begin $error("Error: TLP segment header width must be 128 (instance %m)"); $finish; end if (TLP_STRB_WIDTH*32 != TLP_DATA_WIDTH) begin $error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)"); $finish; end end reg [PORTS-1:0] in_tlp_ready_cmb; reg frame_reg = 1'b0, frame_next, frame_cyc; reg [CL_PORTS-1:0] port_reg = 0, port_next, port_cyc; reg [SEG_SEL_WIDTH+1-1:0] seg_offset_cyc; reg valid, eop; reg frame, abort; reg [TLP_SEG_COUNT*2-1:0] port_seg_valid[0:PORTS-1]; reg [TLP_SEG_COUNT*2-1:0] port_seg_eop[0:PORTS-1]; reg [TLP_SEG_COUNT-1:0] out_sel, out_sel_cyc; reg [CL_PORTS-1:0] out_sel_port[0:TLP_SEG_COUNT-1]; reg [SEG_SEL_WIDTH+1-1:0] out_sel_seg[0:TLP_SEG_COUNT-1]; reg [SEG_SEL_WIDTH+1-1:0] port_seg_offset_reg[0:PORTS-1], port_seg_offset_next[0:PORTS-1]; reg [TLP_SEG_COUNT*SEQ_NUM_WIDTH-1:0] sel_tlp_seq_reg = 0, sel_tlp_seq_next; reg [PORTS*TLP_SEG_COUNT-1:0] sel_tlp_seq_valid_reg = 0, sel_tlp_seq_valid_next, sel_tlp_seq_valid_cyc; reg [TLP_DATA_WIDTH-1:0] in_tlp_data_reg[0:PORTS-1], in_tlp_data_next[0:PORTS-1]; reg [TLP_STRB_WIDTH-1:0] in_tlp_strb_reg[0:PORTS-1], in_tlp_strb_next[0:PORTS-1]; reg [TLP_SEG_COUNT*TLP_HDR_WIDTH-1:0] in_tlp_hdr_reg[0:PORTS-1], in_tlp_hdr_next[0:PORTS-1]; reg [TLP_SEG_COUNT*SEQ_NUM_WIDTH-1:0] in_tlp_seq_reg[0:PORTS-1], in_tlp_seq_next[0:PORTS-1]; reg [TLP_SEG_COUNT*3-1:0] in_tlp_bar_id_reg[0:PORTS-1], in_tlp_bar_id_next[0:PORTS-1]; reg [TLP_SEG_COUNT*8-1:0] in_tlp_func_num_reg[0:PORTS-1], in_tlp_func_num_next[0:PORTS-1]; reg [TLP_SEG_COUNT*4-1:0] in_tlp_error_reg[0:PORTS-1], in_tlp_error_next[0:PORTS-1]; reg [TLP_SEG_COUNT-1:0] in_tlp_valid_reg[0:PORTS-1], in_tlp_valid_next[0:PORTS-1]; reg [TLP_SEG_COUNT-1:0] in_tlp_sop_reg[0:PORTS-1], in_tlp_sop_next[0:PORTS-1]; reg [TLP_SEG_COUNT-1:0] in_tlp_eop_reg[0:PORTS-1], in_tlp_eop_next[0:PORTS-1]; reg [TLP_DATA_WIDTH*2-1:0] in_tlp_data_full[0:PORTS-1]; reg [TLP_STRB_WIDTH*2-1:0] in_tlp_strb_full[0:PORTS-1]; reg [TLP_SEG_COUNT*2*TLP_HDR_WIDTH-1:0] in_tlp_hdr_full[0:PORTS-1]; reg [TLP_SEG_COUNT*2*SEQ_NUM_WIDTH-1:0] in_tlp_seq_full[0:PORTS-1]; reg [TLP_SEG_COUNT*2*3-1:0] in_tlp_bar_id_full[0:PORTS-1]; reg [TLP_SEG_COUNT*2*8-1:0] in_tlp_func_num_full[0:PORTS-1]; reg [TLP_SEG_COUNT*2*4-1:0] in_tlp_error_full[0:PORTS-1]; reg [TLP_SEG_COUNT*2-1:0] in_tlp_valid_full[0:PORTS-1]; reg [TLP_SEG_COUNT*2-1:0] in_tlp_sop_full[0:PORTS-1]; reg [TLP_SEG_COUNT*2-1:0] in_tlp_eop_full[0:PORTS-1]; // internal datapath reg [TLP_DATA_WIDTH-1:0] out_tlp_data_int; reg [TLP_STRB_WIDTH-1:0] out_tlp_strb_int; reg [TLP_SEG_COUNT*TLP_HDR_WIDTH-1:0] out_tlp_hdr_int; reg [TLP_SEG_COUNT*SEQ_NUM_WIDTH-1:0] out_tlp_seq_int; reg [TLP_SEG_COUNT*3-1:0] out_tlp_bar_id_int; reg [TLP_SEG_COUNT*8-1:0] out_tlp_func_num_int; reg [TLP_SEG_COUNT*4-1:0] out_tlp_error_int; reg [TLP_SEG_COUNT-1:0] out_tlp_valid_int; reg [TLP_SEG_COUNT-1:0] out_tlp_sop_int; reg [TLP_SEG_COUNT-1:0] out_tlp_eop_int; reg out_tlp_ready_int_reg = 1'b0; wire out_tlp_ready_int_early; assign in_tlp_ready = in_tlp_ready_cmb; assign sel_tlp_seq = {PORTS{sel_tlp_seq_reg}}; assign sel_tlp_seq_valid = sel_tlp_seq_valid_reg; integer port, cur_port, seg, cur_seg; always @* begin frame_next = frame_reg; port_next = port_reg; for (port = 0; port < PORTS; port = port + 1) begin port_seg_offset_next[port] = port_seg_offset_reg[port]; in_tlp_data_next[port] = in_tlp_data_reg[port]; in_tlp_strb_next[port] = in_tlp_strb_reg[port]; in_tlp_hdr_next[port] = in_tlp_hdr_reg[port]; in_tlp_seq_next[port] = in_tlp_seq_reg[port]; in_tlp_bar_id_next[port] = in_tlp_bar_id_reg[port]; in_tlp_func_num_next[port] = in_tlp_func_num_reg[port]; in_tlp_error_next[port] = in_tlp_error_reg[port]; in_tlp_valid_next[port] = in_tlp_valid_reg[port]; in_tlp_sop_next[port] = in_tlp_sop_reg[port]; in_tlp_eop_next[port] = in_tlp_eop_reg[port]; in_tlp_data_full[port] = {in_tlp_data[port*TLP_DATA_WIDTH +: TLP_DATA_WIDTH], in_tlp_data_reg[port]}; in_tlp_strb_full[port] = {in_tlp_strb[port*TLP_STRB_WIDTH +: TLP_STRB_WIDTH], in_tlp_strb_reg[port]}; in_tlp_hdr_full[port] = {in_tlp_hdr[port*TLP_SEG_COUNT*TLP_HDR_WIDTH +: TLP_SEG_COUNT*TLP_HDR_WIDTH], in_tlp_hdr_reg[port]}; in_tlp_seq_full[port] = {in_tlp_seq[port*TLP_SEG_COUNT*SEQ_NUM_WIDTH +: TLP_SEG_COUNT*SEQ_NUM_WIDTH], in_tlp_seq_reg[port]}; in_tlp_bar_id_full[port] = {in_tlp_bar_id[port*TLP_SEG_COUNT*3 +: TLP_SEG_COUNT*3], in_tlp_bar_id_reg[port]}; in_tlp_func_num_full[port] = {in_tlp_func_num[port*TLP_SEG_COUNT*8 +: TLP_SEG_COUNT*8], in_tlp_func_num_reg[port]}; in_tlp_error_full[port] = {in_tlp_error[port*TLP_SEG_COUNT*4 +: TLP_SEG_COUNT*4], in_tlp_error_reg[port]}; in_tlp_valid_full[port] = {in_tlp_valid[port*TLP_SEG_COUNT +: TLP_SEG_COUNT], in_tlp_valid_reg[port]}; in_tlp_sop_full[port] = {in_tlp_sop[port*TLP_SEG_COUNT +: TLP_SEG_COUNT], in_tlp_sop_reg[port]}; in_tlp_eop_full[port] = {in_tlp_eop[port*TLP_SEG_COUNT +: TLP_SEG_COUNT], in_tlp_eop_reg[port]}; end out_tlp_data_int = 0; out_tlp_strb_int = 0; out_tlp_hdr_int = 0; out_tlp_seq_int = 0; out_tlp_bar_id_int = 0; out_tlp_func_num_int = 0; out_tlp_error_int = 0; out_tlp_valid_int = 0; out_tlp_sop_int = 0; out_tlp_eop_int = 0; frame_cyc = frame_reg; port_cyc = port_reg; seg_offset_cyc = port_seg_offset_reg[port_reg]; valid = 0; eop = 0; frame = frame_cyc; abort = 0; out_sel = 0; out_sel_cyc = 0; for (seg = 0; seg < TLP_SEG_COUNT; seg = seg + 1) begin out_sel_port[seg] = 0; out_sel_seg[seg] = 0; end sel_tlp_seq_next = 0; sel_tlp_seq_valid_next = 0; sel_tlp_seq_valid_cyc = 0; // compute mux settings for (port = 0; port < PORTS; port = port + 1) begin port_seg_valid[port] = pause[port] ? 0 : {2{in_tlp_valid_full[port]}} >> port_seg_offset_reg[port]; port_seg_eop[port] = {2{in_tlp_eop_full[port]}} >> port_seg_offset_reg[port]; end for (seg = 0; seg < TLP_SEG_COUNT; seg = seg + 1) begin // select port if (!frame_cyc) begin if (ARB_TYPE_ROUND_ROBIN) begin // round robin arb - start checking after previously-selected port if (ARB_LSB_HIGH_PRIORITY) begin if (port_cyc < PORTS-1) begin cur_port = port_cyc + 1; end else begin cur_port = 0; end end else begin if (port_cyc > 0) begin cur_port = port_cyc - 1; end else begin cur_port = PORTS-1; end end end else begin // priority arb - start from high priority end if (ARB_LSB_HIGH_PRIORITY) begin cur_port = 0; end else begin cur_port = PORTS-1; end end for (port = 0; port < PORTS; port = port + 1) begin if (!frame_cyc) begin // select port port_cyc = cur_port; seg_offset_cyc = port_seg_offset_next[cur_port]; if (port_seg_valid[cur_port][0]) begin // set frame frame_cyc = 1; sel_tlp_seq_valid_cyc[TLP_SEG_COUNT*cur_port+seg] = 1'b1; end end // next port if (ARB_LSB_HIGH_PRIORITY) begin if (cur_port < PORTS-1) begin cur_port = cur_port + 1; end else begin cur_port = 0; end end else begin if (cur_port > 0) begin cur_port = cur_port - 1; end else begin cur_port = PORTS-1; end end end end // route segment valid = port_seg_valid[port_cyc][0]; eop = port_seg_eop[port_cyc][0]; frame = frame_cyc; out_sel_cyc[seg] = 1'b1; out_sel_port[seg] = port_cyc; out_sel_seg[seg] = seg_offset_cyc; if (eop) begin // end of packet, clear frame frame_cyc = 0; end seg_offset_cyc = seg_offset_cyc + 1; port_seg_valid[port_cyc] = port_seg_valid[port_cyc] >> 1; port_seg_eop[port_cyc] = port_seg_eop[port_cyc] >> 1; if (frame && !abort) begin if (valid) begin if (eop || seg == TLP_SEG_COUNT-1) begin // end of packet or end of cycle, commit if (out_tlp_ready_int_reg) begin frame_next = frame_cyc; port_next = port_cyc; port_seg_offset_next[port_cyc] = seg_offset_cyc; out_sel = out_sel_cyc; sel_tlp_seq_valid_next = sel_tlp_seq_valid_cyc; end end end else begin // input has stalled, wait abort = 1; end end end // mux for output segments for (seg = 0; seg < TLP_SEG_COUNT; seg = seg + 1) begin out_tlp_data_int[seg*TLP_SEG_DATA_WIDTH +: TLP_SEG_DATA_WIDTH] = in_tlp_data_full[out_sel_port[seg]][out_sel_seg[seg]*TLP_SEG_DATA_WIDTH +: TLP_SEG_DATA_WIDTH]; out_tlp_strb_int[seg*TLP_SEG_STRB_WIDTH +: TLP_SEG_STRB_WIDTH] = in_tlp_strb_full[out_sel_port[seg]][out_sel_seg[seg]*TLP_SEG_STRB_WIDTH +: TLP_SEG_STRB_WIDTH]; out_tlp_hdr_int[seg*TLP_HDR_WIDTH +: TLP_HDR_WIDTH] = in_tlp_hdr_full[out_sel_port[seg]][out_sel_seg[seg]*TLP_HDR_WIDTH +: TLP_HDR_WIDTH]; out_tlp_seq_int[seg*SEQ_NUM_WIDTH +: SEQ_NUM_WIDTH] = in_tlp_seq_full[out_sel_port[seg]][out_sel_seg[seg]*SEQ_NUM_WIDTH +: SEQ_NUM_WIDTH]; out_tlp_bar_id_int[seg*3 +: 3] = in_tlp_bar_id_full[out_sel_port[seg]][out_sel_seg[seg]*3 +: 3]; out_tlp_func_num_int[seg*8 +: 8] = in_tlp_func_num_full[out_sel_port[seg]][out_sel_seg[seg]*8 +: 8]; out_tlp_error_int[seg*4 +: 4] = in_tlp_error_full[out_sel_port[seg]][out_sel_seg[seg]*4 +: 4]; if (out_sel[seg]) begin out_tlp_valid_int[seg +: 1] = in_tlp_valid_full[out_sel_port[seg]][out_sel_seg[seg] +: 1]; end out_tlp_sop_int[seg +: 1] = in_tlp_sop_full[out_sel_port[seg]][out_sel_seg[seg] +: 1]; out_tlp_eop_int[seg +: 1] = in_tlp_eop_full[out_sel_port[seg]][out_sel_seg[seg] +: 1]; sel_tlp_seq_next[seg*SEQ_NUM_WIDTH +: SEQ_NUM_WIDTH] = in_tlp_seq_full[out_sel_port[seg]][out_sel_seg[seg]*SEQ_NUM_WIDTH +: SEQ_NUM_WIDTH]; end in_tlp_ready_cmb = 0; for (port = 0; port < PORTS; port = port + 1) begin in_tlp_valid_next[port] = in_tlp_valid_reg[port] & ({TLP_SEG_COUNT{1'b1}} << port_seg_offset_next[port]); if (port_seg_offset_next[port] >= TLP_SEG_COUNT) begin port_seg_offset_next[port] = port_seg_offset_next[port] - TLP_SEG_COUNT; end else if (in_tlp_valid_reg[port] && (in_tlp_valid_next[port] == 0)) begin port_seg_offset_next[port] = 0; end if (!in_tlp_valid_next[port]) begin in_tlp_ready_cmb[port] = 1; in_tlp_data_next[port] = in_tlp_data[port*TLP_DATA_WIDTH +: TLP_DATA_WIDTH]; in_tlp_strb_next[port] = in_tlp_strb[port*TLP_STRB_WIDTH +: TLP_STRB_WIDTH]; in_tlp_hdr_next[port] = in_tlp_hdr[port*TLP_SEG_COUNT*TLP_HDR_WIDTH +: TLP_SEG_COUNT*TLP_HDR_WIDTH]; in_tlp_seq_next[port] = in_tlp_seq[port*TLP_SEG_COUNT*SEQ_NUM_WIDTH +: TLP_SEG_COUNT*SEQ_NUM_WIDTH]; in_tlp_bar_id_next[port] = in_tlp_bar_id[port*TLP_SEG_COUNT*3 +: TLP_SEG_COUNT*3]; in_tlp_func_num_next[port] = in_tlp_func_num[port*TLP_SEG_COUNT*8 +: TLP_SEG_COUNT*8]; in_tlp_error_next[port] = in_tlp_error[port*TLP_SEG_COUNT*4 +: TLP_SEG_COUNT*4]; in_tlp_valid_next[port] = in_tlp_valid[port*TLP_SEG_COUNT +: TLP_SEG_COUNT]; in_tlp_sop_next[port] = in_tlp_sop[port*TLP_SEG_COUNT +: TLP_SEG_COUNT]; in_tlp_eop_next[port] = in_tlp_eop[port*TLP_SEG_COUNT +: TLP_SEG_COUNT]; end end end integer i; always @(posedge clk) begin frame_reg <= frame_next; port_reg <= port_next; sel_tlp_seq_reg <= sel_tlp_seq_next; sel_tlp_seq_valid_reg <= sel_tlp_seq_valid_next; for (i = 0; i < PORTS; i = i + 1) begin port_seg_offset_reg[i] <= port_seg_offset_next[i]; in_tlp_data_reg[i] <= in_tlp_data_next[i]; in_tlp_strb_reg[i] <= in_tlp_strb_next[i]; in_tlp_hdr_reg[i] <= in_tlp_hdr_next[i]; in_tlp_seq_reg[i] <= in_tlp_seq_next[i]; in_tlp_bar_id_reg[i] <= in_tlp_bar_id_next[i]; in_tlp_func_num_reg[i] <= in_tlp_func_num_next[i]; in_tlp_error_reg[i] <= in_tlp_error_next[i]; in_tlp_valid_reg[i] <= in_tlp_valid_next[i]; in_tlp_sop_reg[i] <= in_tlp_sop_next[i]; in_tlp_eop_reg[i] <= in_tlp_eop_next[i]; end if (rst) begin frame_reg <= 1'b0; port_reg <= 0; sel_tlp_seq_valid_reg <= 0; for (i = 0; i < PORTS; i = i + 1) begin port_seg_offset_reg[i] <= 0; in_tlp_valid_reg[i] <= 0; end end end // output datapath logic reg [TLP_DATA_WIDTH-1:0] out_tlp_data_reg = 0; reg [TLP_STRB_WIDTH-1:0] out_tlp_strb_reg = 0; reg [TLP_SEG_COUNT*TLP_HDR_WIDTH-1:0] out_tlp_hdr_reg = 0; reg [TLP_SEG_COUNT*SEQ_NUM_WIDTH-1:0] out_tlp_seq_reg = 0; reg [TLP_SEG_COUNT*3-1:0] out_tlp_bar_id_reg = 0; reg [TLP_SEG_COUNT*8-1:0] out_tlp_func_num_reg = 0; reg [TLP_SEG_COUNT*4-1:0] out_tlp_error_reg = 0; reg [TLP_SEG_COUNT-1:0] out_tlp_valid_reg = 0, out_tlp_valid_next; reg [TLP_SEG_COUNT-1:0] out_tlp_sop_reg = 0; reg [TLP_SEG_COUNT-1:0] out_tlp_eop_reg = 0; reg [TLP_DATA_WIDTH-1:0] temp_out_tlp_data_reg = 0; reg [TLP_STRB_WIDTH-1:0] temp_out_tlp_strb_reg = 0; reg [TLP_SEG_COUNT*TLP_HDR_WIDTH-1:0] temp_out_tlp_hdr_reg = 0; reg [TLP_SEG_COUNT*SEQ_NUM_WIDTH-1:0] temp_out_tlp_seq_reg = 0; reg [TLP_SEG_COUNT*3-1:0] temp_out_tlp_bar_id_reg = 0; reg [TLP_SEG_COUNT*8-1:0] temp_out_tlp_func_num_reg = 0; reg [TLP_SEG_COUNT*4-1:0] temp_out_tlp_error_reg = 0; reg [TLP_SEG_COUNT-1:0] temp_out_tlp_valid_reg = 0, temp_out_tlp_valid_next; reg [TLP_SEG_COUNT-1:0] temp_out_tlp_sop_reg = 0; reg [TLP_SEG_COUNT-1:0] temp_out_tlp_eop_reg = 0; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_axis_temp_to_output; assign out_tlp_data = out_tlp_data_reg; assign out_tlp_strb = out_tlp_strb_reg; assign out_tlp_hdr = out_tlp_hdr_reg; assign out_tlp_seq = out_tlp_seq_reg; assign out_tlp_bar_id = out_tlp_bar_id_reg; assign out_tlp_func_num = out_tlp_func_num_reg; assign out_tlp_error = out_tlp_error_reg; assign out_tlp_valid = out_tlp_valid_reg; assign out_tlp_sop = out_tlp_sop_reg; assign out_tlp_eop = out_tlp_eop_reg; // enable ready input next cycle if output is ready or if both output registers are empty assign out_tlp_ready_int_early = out_tlp_ready || (!temp_out_tlp_valid_reg && !out_tlp_valid_reg); always @* begin // transfer sink ready state to source out_tlp_valid_next = out_tlp_valid_reg; temp_out_tlp_valid_next = temp_out_tlp_valid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_temp_to_output = 1'b0; if (out_tlp_ready_int_reg) begin // input is ready if (out_tlp_ready || !out_tlp_valid_reg) begin // output is ready or currently not valid, transfer data to output out_tlp_valid_next = out_tlp_valid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_out_tlp_valid_next = out_tlp_valid_int; store_axis_int_to_temp = 1'b1; end end else if (out_tlp_ready) begin // input is not ready, but output is ready out_tlp_valid_next = temp_out_tlp_valid_reg; temp_out_tlp_valid_next = 1'b0; store_axis_temp_to_output = 1'b1; end end always @(posedge clk) begin out_tlp_valid_reg <= out_tlp_valid_next; out_tlp_ready_int_reg <= out_tlp_ready_int_early; temp_out_tlp_valid_reg <= temp_out_tlp_valid_next; // datapath if (store_axis_int_to_output) begin out_tlp_data_reg <= out_tlp_data_int; out_tlp_strb_reg <= out_tlp_strb_int; out_tlp_hdr_reg <= out_tlp_hdr_int; out_tlp_seq_reg <= out_tlp_seq_int; out_tlp_bar_id_reg <= out_tlp_bar_id_int; out_tlp_func_num_reg <= out_tlp_func_num_int; out_tlp_error_reg <= out_tlp_error_int; out_tlp_sop_reg <= out_tlp_sop_int; out_tlp_eop_reg <= out_tlp_eop_int; end else if (store_axis_temp_to_output) begin out_tlp_data_reg <= temp_out_tlp_data_reg; out_tlp_strb_reg <= temp_out_tlp_strb_reg; out_tlp_hdr_reg <= temp_out_tlp_hdr_reg; out_tlp_seq_reg <= temp_out_tlp_seq_reg; out_tlp_bar_id_reg <= temp_out_tlp_bar_id_reg; out_tlp_func_num_reg <= temp_out_tlp_func_num_reg; out_tlp_error_reg <= temp_out_tlp_error_reg; out_tlp_sop_reg <= temp_out_tlp_sop_reg; out_tlp_eop_reg <= temp_out_tlp_eop_reg; end if (store_axis_int_to_temp) begin temp_out_tlp_data_reg <= out_tlp_data_int; temp_out_tlp_strb_reg <= out_tlp_strb_int; temp_out_tlp_hdr_reg <= out_tlp_hdr_int; temp_out_tlp_seq_reg <= out_tlp_seq_int; temp_out_tlp_bar_id_reg <= out_tlp_bar_id_int; temp_out_tlp_func_num_reg <= out_tlp_func_num_int; temp_out_tlp_error_reg <= out_tlp_error_int; temp_out_tlp_sop_reg <= out_tlp_sop_int; temp_out_tlp_eop_reg <= out_tlp_eop_int; end if (rst) begin out_tlp_valid_reg <= 1'b0; out_tlp_ready_int_reg <= 1'b0; temp_out_tlp_valid_reg <= 1'b0; end end endmodule `resetall