/* Copyright (c) 2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4 FIFO (write) */ module axi_fifo_wr # ( // Width of data bus in bits parameter DATA_WIDTH = 32, // Width of address bus in bits parameter ADDR_WIDTH = 32, // Width of wstrb (width of data bus in words) parameter STRB_WIDTH = (DATA_WIDTH/8), // Width of ID signal parameter ID_WIDTH = 8, // Propagate awuser signal parameter AWUSER_ENABLE = 0, // Width of awuser signal parameter AWUSER_WIDTH = 1, // Propagate wuser signal parameter WUSER_ENABLE = 0, // Width of wuser signal parameter WUSER_WIDTH = 1, // Propagate buser signal parameter BUSER_ENABLE = 0, // Width of buser signal parameter BUSER_WIDTH = 1, // Write data FIFO depth (cycles) parameter FIFO_DEPTH = 32, // Hold write address until write data in FIFO, if possible parameter FIFO_DELAY = 0 ) ( input wire clk, input wire rst, /* * AXI slave interface */ input wire [ID_WIDTH-1:0] s_axi_awid, input wire [ADDR_WIDTH-1:0] s_axi_awaddr, input wire [7:0] s_axi_awlen, input wire [2:0] s_axi_awsize, input wire [1:0] s_axi_awburst, input wire s_axi_awlock, input wire [3:0] s_axi_awcache, input wire [2:0] s_axi_awprot, input wire [3:0] s_axi_awqos, input wire [3:0] s_axi_awregion, input wire [AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, input wire [DATA_WIDTH-1:0] s_axi_wdata, input wire [STRB_WIDTH-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, output wire [ID_WIDTH-1:0] s_axi_bid, output wire [1:0] s_axi_bresp, output wire [BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, /* * AXI master interface */ output wire [ID_WIDTH-1:0] m_axi_awid, output wire [ADDR_WIDTH-1:0] m_axi_awaddr, output wire [7:0] m_axi_awlen, output wire [2:0] m_axi_awsize, output wire [1:0] m_axi_awburst, output wire m_axi_awlock, output wire [3:0] m_axi_awcache, output wire [2:0] m_axi_awprot, output wire [3:0] m_axi_awqos, output wire [3:0] m_axi_awregion, output wire [AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, output wire [DATA_WIDTH-1:0] m_axi_wdata, output wire [STRB_WIDTH-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, input wire [ID_WIDTH-1:0] m_axi_bid, input wire [1:0] m_axi_bresp, input wire [BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready ); parameter STRB_OFFSET = DATA_WIDTH; parameter LAST_OFFSET = STRB_OFFSET + STRB_WIDTH; parameter WUSER_OFFSET = LAST_OFFSET + 1; parameter WWIDTH = WUSER_OFFSET + (WUSER_ENABLE ? WUSER_WIDTH : 0); parameter FIFO_ADDR_WIDTH = $clog2(FIFO_DEPTH); reg [FIFO_ADDR_WIDTH:0] wr_ptr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, wr_ptr_next; reg [FIFO_ADDR_WIDTH:0] wr_addr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}; reg [FIFO_ADDR_WIDTH:0] rd_ptr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, rd_ptr_next; reg [FIFO_ADDR_WIDTH:0] rd_addr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}; (* ramstyle = "no_rw_check" *) reg [WWIDTH-1:0] mem[(2**FIFO_ADDR_WIDTH)-1:0]; reg [WWIDTH-1:0] mem_read_data_reg; reg mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next; wire [WWIDTH-1:0] s_axi_w; reg [WWIDTH-1:0] m_axi_w_reg; reg m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next; // full when first MSB different but rest same wire full = ((wr_ptr_reg[FIFO_ADDR_WIDTH] != rd_ptr_reg[FIFO_ADDR_WIDTH]) && (wr_ptr_reg[FIFO_ADDR_WIDTH-1:0] == rd_ptr_reg[FIFO_ADDR_WIDTH-1:0])); // empty when pointers match exactly wire empty = wr_ptr_reg == rd_ptr_reg; wire hold; // control signals reg write; reg read; reg store_output; assign s_axi_wready = !full && !hold; generate assign s_axi_w[DATA_WIDTH-1:0] = s_axi_wdata; assign s_axi_w[STRB_OFFSET +: STRB_WIDTH] = s_axi_wstrb; assign s_axi_w[LAST_OFFSET] = s_axi_wlast; if (WUSER_ENABLE) assign s_axi_w[WUSER_OFFSET +: WUSER_WIDTH] = s_axi_wuser; endgenerate generate if (FIFO_DELAY) begin // store AW channel value until W channel burst is stored in FIFO or FIFO is full localparam [1:0] STATE_IDLE = 2'd0, STATE_TRANSFER_IN = 2'd1, STATE_TRANSFER_OUT = 2'd2; reg [1:0] state_reg = STATE_IDLE, state_next; reg hold_reg = 1'b1, hold_next; reg [8:0] count_reg = 9'd0, count_next; reg [ID_WIDTH-1:0] m_axi_awid_reg = {ID_WIDTH{1'b0}}, m_axi_awid_next; reg [ADDR_WIDTH-1:0] m_axi_awaddr_reg = {ADDR_WIDTH{1'b0}}, m_axi_awaddr_next; reg [7:0] m_axi_awlen_reg = 8'd0, m_axi_awlen_next; reg [2:0] m_axi_awsize_reg = 3'd0, m_axi_awsize_next; reg [1:0] m_axi_awburst_reg = 2'd0, m_axi_awburst_next; reg m_axi_awlock_reg = 1'b0, m_axi_awlock_next; reg [3:0] m_axi_awcache_reg = 4'd0, m_axi_awcache_next; reg [2:0] m_axi_awprot_reg = 3'd0, m_axi_awprot_next; reg [3:0] m_axi_awqos_reg = 4'd0, m_axi_awqos_next; reg [3:0] m_axi_awregion_reg = 4'd0, m_axi_awregion_next; reg [AWUSER_WIDTH-1:0] m_axi_awuser_reg = {AWUSER_WIDTH{1'b0}}, m_axi_awuser_next; reg m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next; reg s_axi_awready_reg = 1'b0, s_axi_awready_next; assign m_axi_awid = m_axi_awid_reg; assign m_axi_awaddr = m_axi_awaddr_reg; assign m_axi_awlen = m_axi_awlen_reg; assign m_axi_awsize = m_axi_awsize_reg; assign m_axi_awburst = m_axi_awburst_reg; assign m_axi_awlock = m_axi_awlock_reg; assign m_axi_awcache = m_axi_awcache_reg; assign m_axi_awprot = m_axi_awprot_reg; assign m_axi_awqos = m_axi_awqos_reg; assign m_axi_awregion = m_axi_awregion_reg; assign m_axi_awuser = AWUSER_ENABLE ? m_axi_awuser_reg : {AWUSER_WIDTH{1'b0}}; assign m_axi_awvalid = m_axi_awvalid_reg; assign s_axi_awready = s_axi_awready_reg; assign hold = hold_reg; always @* begin state_next = STATE_IDLE; hold_next = hold_reg; count_next = count_reg; m_axi_awid_next = m_axi_awid_reg; m_axi_awaddr_next = m_axi_awaddr_reg; m_axi_awlen_next = m_axi_awlen_reg; m_axi_awsize_next = m_axi_awsize_reg; m_axi_awburst_next = m_axi_awburst_reg; m_axi_awlock_next = m_axi_awlock_reg; m_axi_awcache_next = m_axi_awcache_reg; m_axi_awprot_next = m_axi_awprot_reg; m_axi_awqos_next = m_axi_awqos_reg; m_axi_awregion_next = m_axi_awregion_reg; m_axi_awuser_next = m_axi_awuser_reg; m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_awready; s_axi_awready_next = s_axi_awready_reg; case (state_reg) STATE_IDLE: begin s_axi_awready_next = !m_axi_awvalid || m_axi_awready; hold_next = 1'b1; if (s_axi_awready && s_axi_awvalid) begin s_axi_awready_next = 1'b0; m_axi_awid_next = s_axi_awid; m_axi_awaddr_next = s_axi_awaddr; m_axi_awlen_next = s_axi_awlen; m_axi_awsize_next = s_axi_awsize; m_axi_awburst_next = s_axi_awburst; m_axi_awlock_next = s_axi_awlock; m_axi_awcache_next = s_axi_awcache; m_axi_awprot_next = s_axi_awprot; m_axi_awqos_next = s_axi_awqos; m_axi_awregion_next = s_axi_awregion; m_axi_awuser_next = s_axi_awuser; hold_next = 1'b0; count_next = 0; state_next = STATE_TRANSFER_IN; end else begin state_next = STATE_IDLE; end end STATE_TRANSFER_IN: begin s_axi_awready_next = 1'b0; hold_next = 1'b0; if (s_axi_wready && s_axi_wvalid) begin count_next = count_reg + 1; if (s_axi_wlast) begin m_axi_awvalid_next = 1'b1; hold_next = 1'b1; state_next = STATE_IDLE; end else if (FIFO_ADDR_WIDTH < 8 && count_next == 2**FIFO_ADDR_WIDTH) begin m_axi_awvalid_next = 1'b1; state_next = STATE_TRANSFER_OUT; end else begin state_next = STATE_TRANSFER_IN; end end else begin state_next = STATE_TRANSFER_IN; end end STATE_TRANSFER_OUT: begin s_axi_awready_next = 1'b0; hold_next = 1'b0; if (s_axi_wready && s_axi_wvalid) begin if (s_axi_wlast) begin hold_next = 1'b1; state_next = STATE_IDLE; end else begin state_next = STATE_TRANSFER_OUT; end end else begin state_next = STATE_TRANSFER_OUT; end end endcase end always @(posedge clk) begin state_reg <= state_next; hold_reg <= hold_next; count_reg <= count_next; m_axi_awid_reg <= m_axi_awid_next; m_axi_awaddr_reg <= m_axi_awaddr_next; m_axi_awlen_reg <= m_axi_awlen_next; m_axi_awsize_reg <= m_axi_awsize_next; m_axi_awburst_reg <= m_axi_awburst_next; m_axi_awlock_reg <= m_axi_awlock_next; m_axi_awcache_reg <= m_axi_awcache_next; m_axi_awprot_reg <= m_axi_awprot_next; m_axi_awqos_reg <= m_axi_awqos_next; m_axi_awregion_reg <= m_axi_awregion_next; m_axi_awuser_reg <= m_axi_awuser_next; m_axi_awvalid_reg <= m_axi_awvalid_next; s_axi_awready_reg <= s_axi_awready_next; if (rst) begin state_reg <= STATE_IDLE; hold_reg <= 1'b1; m_axi_awvalid_reg <= 1'b0; s_axi_awready_reg <= 1'b0; end end end else begin // bypass AW channel assign m_axi_awid = s_axi_awid; assign m_axi_awaddr = s_axi_awaddr; assign m_axi_awlen = s_axi_awlen; assign m_axi_awsize = s_axi_awsize; assign m_axi_awburst = s_axi_awburst; assign m_axi_awlock = s_axi_awlock; assign m_axi_awcache = s_axi_awcache; assign m_axi_awprot = s_axi_awprot; assign m_axi_awqos = s_axi_awqos; assign m_axi_awregion = s_axi_awregion; assign m_axi_awuser = AWUSER_ENABLE ? s_axi_awuser : {AWUSER_WIDTH{1'b0}}; assign m_axi_awvalid = s_axi_awvalid; assign s_axi_awready = m_axi_awready; assign hold = 1'b0; end endgenerate // bypass B channel assign s_axi_bid = m_axi_bid; assign s_axi_bresp = m_axi_bresp; assign s_axi_buser = BUSER_ENABLE ? m_axi_buser : {BUSER_WIDTH{1'b0}}; assign s_axi_bvalid = m_axi_bvalid; assign m_axi_bready = s_axi_bready; assign m_axi_wvalid = m_axi_wvalid_reg; assign m_axi_wdata = m_axi_w_reg[DATA_WIDTH-1:0]; assign m_axi_wstrb = m_axi_w_reg[STRB_OFFSET +: STRB_WIDTH]; assign m_axi_wlast = m_axi_w_reg[LAST_OFFSET]; assign m_axi_wuser = WUSER_ENABLE ? m_axi_w_reg[WUSER_OFFSET +: WUSER_WIDTH] : {WUSER_WIDTH{1'b0}}; // Write logic always @* begin write = 1'b0; wr_ptr_next = wr_ptr_reg; if (s_axi_wvalid) begin // input data valid if (!full && !hold) begin // not full, perform write write = 1'b1; wr_ptr_next = wr_ptr_reg + 1; end end end always @(posedge clk) begin wr_ptr_reg <= wr_ptr_next; wr_addr_reg <= wr_ptr_next; if (write) begin mem[wr_addr_reg[FIFO_ADDR_WIDTH-1:0]] <= s_axi_w; end if (rst) begin wr_ptr_reg <= {FIFO_ADDR_WIDTH+1{1'b0}}; end end // Read logic always @* begin read = 1'b0; rd_ptr_next = rd_ptr_reg; mem_read_data_valid_next = mem_read_data_valid_reg; if (store_output || !mem_read_data_valid_reg) begin // output data not valid OR currently being transferred if (!empty) begin // not empty, perform read read = 1'b1; mem_read_data_valid_next = 1'b1; rd_ptr_next = rd_ptr_reg + 1; end else begin // empty, invalidate mem_read_data_valid_next = 1'b0; end end end always @(posedge clk) begin rd_ptr_reg <= rd_ptr_next; rd_addr_reg <= rd_ptr_next; mem_read_data_valid_reg <= mem_read_data_valid_next; if (read) begin mem_read_data_reg <= mem[rd_addr_reg[FIFO_ADDR_WIDTH-1:0]]; end if (rst) begin rd_ptr_reg <= {FIFO_ADDR_WIDTH+1{1'b0}}; mem_read_data_valid_reg <= 1'b0; end end // Output register always @* begin store_output = 1'b0; m_axi_wvalid_next = m_axi_wvalid_reg; if (m_axi_wready || !m_axi_wvalid) begin store_output = 1'b1; m_axi_wvalid_next = mem_read_data_valid_reg; end end always @(posedge clk) begin m_axi_wvalid_reg <= m_axi_wvalid_next; if (store_output) begin m_axi_w_reg <= mem_read_data_reg; end if (rst) begin m_axi_wvalid_reg <= 1'b0; end end endmodule `resetall