/* Copyright (c) 2014-2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * Ethernet arbitrated multiplexer */ module eth_arb_mux # ( parameter S_COUNT = 4, parameter DATA_WIDTH = 8, parameter KEEP_ENABLE = (DATA_WIDTH>8), parameter KEEP_WIDTH = (DATA_WIDTH/8), parameter ID_ENABLE = 0, parameter ID_WIDTH = 8, parameter DEST_ENABLE = 0, parameter DEST_WIDTH = 8, parameter USER_ENABLE = 1, parameter USER_WIDTH = 1, // arbitration type: "PRIORITY" or "ROUND_ROBIN" parameter ARB_TYPE = "PRIORITY", // LSB priority: "LOW", "HIGH" parameter LSB_PRIORITY = "HIGH" ) ( input wire clk, input wire rst, /* * Ethernet frame inputs */ input wire [S_COUNT-1:0] s_eth_hdr_valid, output wire [S_COUNT-1:0] s_eth_hdr_ready, input wire [S_COUNT*48-1:0] s_eth_dest_mac, input wire [S_COUNT*48-1:0] s_eth_src_mac, input wire [S_COUNT*16-1:0] s_eth_type, input wire [S_COUNT*DATA_WIDTH-1:0] s_eth_payload_axis_tdata, input wire [S_COUNT*KEEP_WIDTH-1:0] s_eth_payload_axis_tkeep, input wire [S_COUNT-1:0] s_eth_payload_axis_tvalid, output wire [S_COUNT-1:0] s_eth_payload_axis_tready, input wire [S_COUNT-1:0] s_eth_payload_axis_tlast, input wire [S_COUNT*ID_WIDTH-1:0] s_eth_payload_axis_tid, input wire [S_COUNT*DEST_WIDTH-1:0] s_eth_payload_axis_tdest, input wire [S_COUNT*USER_WIDTH-1:0] s_eth_payload_axis_tuser, /* * Ethernet frame output */ output wire m_eth_hdr_valid, input wire m_eth_hdr_ready, output wire [47:0] m_eth_dest_mac, output wire [47:0] m_eth_src_mac, output wire [15:0] m_eth_type, output wire [DATA_WIDTH-1:0] m_eth_payload_axis_tdata, output wire [KEEP_WIDTH-1:0] m_eth_payload_axis_tkeep, output wire m_eth_payload_axis_tvalid, input wire m_eth_payload_axis_tready, output wire m_eth_payload_axis_tlast, output wire [ID_WIDTH-1:0] m_eth_payload_axis_tid, output wire [DEST_WIDTH-1:0] m_eth_payload_axis_tdest, output wire [USER_WIDTH-1:0] m_eth_payload_axis_tuser ); parameter CL_S_COUNT = $clog2(S_COUNT); reg frame_reg = 1'b0, frame_next; reg [S_COUNT-1:0] s_eth_hdr_ready_reg = {S_COUNT{1'b0}}, s_eth_hdr_ready_next; reg m_eth_hdr_valid_reg = 1'b0, m_eth_hdr_valid_next; reg [47:0] m_eth_dest_mac_reg = 48'd0, m_eth_dest_mac_next; reg [47:0] m_eth_src_mac_reg = 48'd0, m_eth_src_mac_next; reg [15:0] m_eth_type_reg = 16'd0, m_eth_type_next; wire [S_COUNT-1:0] request; wire [S_COUNT-1:0] acknowledge; wire [S_COUNT-1:0] grant; wire grant_valid; wire [CL_S_COUNT-1:0] grant_encoded; // internal datapath reg [DATA_WIDTH-1:0] m_eth_payload_axis_tdata_int; reg [KEEP_WIDTH-1:0] m_eth_payload_axis_tkeep_int; reg m_eth_payload_axis_tvalid_int; reg m_eth_payload_axis_tready_int_reg = 1'b0; reg m_eth_payload_axis_tlast_int; reg [ID_WIDTH-1:0] m_eth_payload_axis_tid_int; reg [DEST_WIDTH-1:0] m_eth_payload_axis_tdest_int; reg [USER_WIDTH-1:0] m_eth_payload_axis_tuser_int; wire m_eth_payload_axis_tready_int_early; assign s_eth_hdr_ready = s_eth_hdr_ready_reg; assign s_eth_payload_axis_tready = (m_eth_payload_axis_tready_int_reg && grant_valid) << grant_encoded; assign m_eth_hdr_valid = m_eth_hdr_valid_reg; assign m_eth_dest_mac = m_eth_dest_mac_reg; assign m_eth_src_mac = m_eth_src_mac_reg; assign m_eth_type = m_eth_type_reg; // mux for incoming packet wire [DATA_WIDTH-1:0] current_s_tdata = s_eth_payload_axis_tdata[grant_encoded*DATA_WIDTH +: DATA_WIDTH]; wire [KEEP_WIDTH-1:0] current_s_tkeep = s_eth_payload_axis_tkeep[grant_encoded*KEEP_WIDTH +: KEEP_WIDTH]; wire current_s_tvalid = s_eth_payload_axis_tvalid[grant_encoded]; wire current_s_tready = s_eth_payload_axis_tready[grant_encoded]; wire current_s_tlast = s_eth_payload_axis_tlast[grant_encoded]; wire [ID_WIDTH-1:0] current_s_tid = s_eth_payload_axis_tid[grant_encoded*ID_WIDTH +: ID_WIDTH]; wire [DEST_WIDTH-1:0] current_s_tdest = s_eth_payload_axis_tdest[grant_encoded*DEST_WIDTH +: DEST_WIDTH]; wire [USER_WIDTH-1:0] current_s_tuser = s_eth_payload_axis_tuser[grant_encoded*USER_WIDTH +: USER_WIDTH]; // arbiter instance arbiter #( .PORTS(S_COUNT), .TYPE(ARB_TYPE), .BLOCK("ACKNOWLEDGE"), .LSB_PRIORITY(LSB_PRIORITY) ) arb_inst ( .clk(clk), .rst(rst), .request(request), .acknowledge(acknowledge), .grant(grant), .grant_valid(grant_valid), .grant_encoded(grant_encoded) ); assign request = s_eth_hdr_valid & ~grant; assign acknowledge = grant & s_eth_payload_axis_tvalid & s_eth_payload_axis_tready & s_eth_payload_axis_tlast; always @* begin frame_next = frame_reg; s_eth_hdr_ready_next = {S_COUNT{1'b0}}; m_eth_hdr_valid_next = m_eth_hdr_valid_reg && !m_eth_hdr_ready; m_eth_dest_mac_next = m_eth_dest_mac_reg; m_eth_src_mac_next = m_eth_src_mac_reg; m_eth_type_next = m_eth_type_reg; if (s_eth_payload_axis_tvalid[grant_encoded] && s_eth_payload_axis_tready[grant_encoded]) begin // end of frame detection if (s_eth_payload_axis_tlast[grant_encoded]) begin frame_next = 1'b0; end end if (!frame_reg && grant_valid && (m_eth_hdr_ready || !m_eth_hdr_valid)) begin // start of frame frame_next = 1'b1; s_eth_hdr_ready_next = grant; m_eth_hdr_valid_next = 1'b1; m_eth_dest_mac_next = s_eth_dest_mac[grant_encoded*48 +: 48]; m_eth_src_mac_next = s_eth_src_mac[grant_encoded*48 +: 48]; m_eth_type_next = s_eth_type[grant_encoded*16 +: 16]; end // pass through selected packet data m_eth_payload_axis_tdata_int = current_s_tdata; m_eth_payload_axis_tkeep_int = current_s_tkeep; m_eth_payload_axis_tvalid_int = current_s_tvalid && m_eth_payload_axis_tready_int_reg && grant_valid; m_eth_payload_axis_tlast_int = current_s_tlast; m_eth_payload_axis_tid_int = current_s_tid; m_eth_payload_axis_tdest_int = current_s_tdest; m_eth_payload_axis_tuser_int = current_s_tuser; end always @(posedge clk) begin frame_reg <= frame_next; s_eth_hdr_ready_reg <= s_eth_hdr_ready_next; m_eth_hdr_valid_reg <= m_eth_hdr_valid_next; m_eth_dest_mac_reg <= m_eth_dest_mac_next; m_eth_src_mac_reg <= m_eth_src_mac_next; m_eth_type_reg <= m_eth_type_next; if (rst) begin frame_reg <= 1'b0; s_eth_hdr_ready_reg <= {S_COUNT{1'b0}}; m_eth_hdr_valid_reg <= 1'b0; end end // output datapath logic reg [DATA_WIDTH-1:0] m_eth_payload_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] m_eth_payload_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg m_eth_payload_axis_tvalid_reg = 1'b0, m_eth_payload_axis_tvalid_next; reg m_eth_payload_axis_tlast_reg = 1'b0; reg [ID_WIDTH-1:0] m_eth_payload_axis_tid_reg = {ID_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] m_eth_payload_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] m_eth_payload_axis_tuser_reg = {USER_WIDTH{1'b0}}; reg [DATA_WIDTH-1:0] temp_m_eth_payload_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] temp_m_eth_payload_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg temp_m_eth_payload_axis_tvalid_reg = 1'b0, temp_m_eth_payload_axis_tvalid_next; reg temp_m_eth_payload_axis_tlast_reg = 1'b0; reg [ID_WIDTH-1:0] temp_m_eth_payload_axis_tid_reg = {ID_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] temp_m_eth_payload_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] temp_m_eth_payload_axis_tuser_reg = {USER_WIDTH{1'b0}}; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_eth_payload_axis_temp_to_output; assign m_eth_payload_axis_tdata = m_eth_payload_axis_tdata_reg; assign m_eth_payload_axis_tkeep = KEEP_ENABLE ? m_eth_payload_axis_tkeep_reg : {KEEP_WIDTH{1'b1}}; assign m_eth_payload_axis_tvalid = m_eth_payload_axis_tvalid_reg; assign m_eth_payload_axis_tlast = m_eth_payload_axis_tlast_reg; assign m_eth_payload_axis_tid = ID_ENABLE ? m_eth_payload_axis_tid_reg : {ID_WIDTH{1'b0}}; assign m_eth_payload_axis_tdest = DEST_ENABLE ? m_eth_payload_axis_tdest_reg : {DEST_WIDTH{1'b0}}; assign m_eth_payload_axis_tuser = USER_ENABLE ? m_eth_payload_axis_tuser_reg : {USER_WIDTH{1'b0}}; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign m_eth_payload_axis_tready_int_early = m_eth_payload_axis_tready || (!temp_m_eth_payload_axis_tvalid_reg && (!m_eth_payload_axis_tvalid_reg || !m_eth_payload_axis_tvalid_int)); always @* begin // transfer sink ready state to source m_eth_payload_axis_tvalid_next = m_eth_payload_axis_tvalid_reg; temp_m_eth_payload_axis_tvalid_next = temp_m_eth_payload_axis_tvalid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_eth_payload_axis_temp_to_output = 1'b0; if (m_eth_payload_axis_tready_int_reg) begin // input is ready if (m_eth_payload_axis_tready || !m_eth_payload_axis_tvalid_reg) begin // output is ready or currently not valid, transfer data to output m_eth_payload_axis_tvalid_next = m_eth_payload_axis_tvalid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_eth_payload_axis_tvalid_next = m_eth_payload_axis_tvalid_int; store_axis_int_to_temp = 1'b1; end end else if (m_eth_payload_axis_tready) begin // input is not ready, but output is ready m_eth_payload_axis_tvalid_next = temp_m_eth_payload_axis_tvalid_reg; temp_m_eth_payload_axis_tvalid_next = 1'b0; store_eth_payload_axis_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin m_eth_payload_axis_tvalid_reg <= 1'b0; m_eth_payload_axis_tready_int_reg <= 1'b0; temp_m_eth_payload_axis_tvalid_reg <= 1'b0; end else begin m_eth_payload_axis_tvalid_reg <= m_eth_payload_axis_tvalid_next; m_eth_payload_axis_tready_int_reg <= m_eth_payload_axis_tready_int_early; temp_m_eth_payload_axis_tvalid_reg <= temp_m_eth_payload_axis_tvalid_next; end // datapath if (store_axis_int_to_output) begin m_eth_payload_axis_tdata_reg <= m_eth_payload_axis_tdata_int; m_eth_payload_axis_tkeep_reg <= m_eth_payload_axis_tkeep_int; m_eth_payload_axis_tlast_reg <= m_eth_payload_axis_tlast_int; m_eth_payload_axis_tid_reg <= m_eth_payload_axis_tid_int; m_eth_payload_axis_tdest_reg <= m_eth_payload_axis_tdest_int; m_eth_payload_axis_tuser_reg <= m_eth_payload_axis_tuser_int; end else if (store_eth_payload_axis_temp_to_output) begin m_eth_payload_axis_tdata_reg <= temp_m_eth_payload_axis_tdata_reg; m_eth_payload_axis_tkeep_reg <= temp_m_eth_payload_axis_tkeep_reg; m_eth_payload_axis_tlast_reg <= temp_m_eth_payload_axis_tlast_reg; m_eth_payload_axis_tid_reg <= temp_m_eth_payload_axis_tid_reg; m_eth_payload_axis_tdest_reg <= temp_m_eth_payload_axis_tdest_reg; m_eth_payload_axis_tuser_reg <= temp_m_eth_payload_axis_tuser_reg; end if (store_axis_int_to_temp) begin temp_m_eth_payload_axis_tdata_reg <= m_eth_payload_axis_tdata_int; temp_m_eth_payload_axis_tkeep_reg <= m_eth_payload_axis_tkeep_int; temp_m_eth_payload_axis_tlast_reg <= m_eth_payload_axis_tlast_int; temp_m_eth_payload_axis_tid_reg <= m_eth_payload_axis_tid_int; temp_m_eth_payload_axis_tdest_reg <= m_eth_payload_axis_tdest_int; temp_m_eth_payload_axis_tuser_reg <= m_eth_payload_axis_tuser_int; end end endmodule