/* Copyright 2019, The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF CALIFORNIA OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of The Regents of the University of California. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * Event mux */ module event_mux # ( // Number of ports parameter PORTS = 2, // Queue index width parameter QUEUE_INDEX_WIDTH = 4, // Event type field width parameter EVENT_TYPE_WIDTH = 16, // Event source field width parameter EVENT_SOURCE_WIDTH = 16, // select round robin arbitration parameter ARB_TYPE_ROUND_ROBIN = 0, // LSB priority selection parameter ARB_LSB_HIGH_PRIORITY = 1 ) ( input wire clk, input wire rst, /* * Event output */ output wire [QUEUE_INDEX_WIDTH-1:0] m_axis_event_queue, output wire [EVENT_TYPE_WIDTH-1:0] m_axis_event_type, output wire [EVENT_SOURCE_WIDTH-1:0] m_axis_event_source, output wire m_axis_event_valid, input wire m_axis_event_ready, /* * Event input */ input wire [PORTS*QUEUE_INDEX_WIDTH-1:0] s_axis_event_queue, input wire [PORTS*EVENT_TYPE_WIDTH-1:0] s_axis_event_type, input wire [PORTS*EVENT_SOURCE_WIDTH-1:0] s_axis_event_source, input wire [PORTS-1:0] s_axis_event_valid, output wire [PORTS-1:0] s_axis_event_ready ); parameter CL_PORTS = $clog2(PORTS); // eventriptor mux wire [PORTS-1:0] request; wire [PORTS-1:0] acknowledge; wire [PORTS-1:0] grant; wire grant_valid; wire [CL_PORTS-1:0] grant_encoded; // internal datapath reg [QUEUE_INDEX_WIDTH-1:0] m_axis_event_queue_int; reg [EVENT_TYPE_WIDTH-1:0] m_axis_event_type_int; reg [EVENT_SOURCE_WIDTH-1:0] m_axis_event_source_int; reg m_axis_event_valid_int; reg m_axis_event_ready_int_reg = 1'b0; wire m_axis_event_ready_int_early; assign s_axis_event_ready = (m_axis_event_ready_int_reg && grant_valid) << grant_encoded; // mux for incoming packet wire [QUEUE_INDEX_WIDTH-1:0] current_s_event_queue = s_axis_event_queue[grant_encoded*QUEUE_INDEX_WIDTH +: QUEUE_INDEX_WIDTH]; wire [EVENT_TYPE_WIDTH-1:0] current_s_event_type = s_axis_event_type[grant_encoded*EVENT_TYPE_WIDTH +: EVENT_TYPE_WIDTH]; wire [EVENT_SOURCE_WIDTH-1:0] current_s_event_source = s_axis_event_source[grant_encoded*EVENT_SOURCE_WIDTH +: EVENT_SOURCE_WIDTH]; wire current_s_event_valid = s_axis_event_valid[grant_encoded]; wire current_s_event_ready = s_axis_event_ready[grant_encoded]; // arbiter instance arbiter #( .PORTS(PORTS), .ARB_TYPE_ROUND_ROBIN(ARB_TYPE_ROUND_ROBIN), .ARB_BLOCK(1), .ARB_BLOCK_ACK(1), .ARB_LSB_HIGH_PRIORITY(ARB_LSB_HIGH_PRIORITY) ) arb_inst ( .clk(clk), .rst(rst), .request(request), .acknowledge(acknowledge), .grant(grant), .grant_valid(grant_valid), .grant_encoded(grant_encoded) ); assign request = s_axis_event_valid & ~grant; assign acknowledge = grant & s_axis_event_valid & s_axis_event_ready; always @* begin m_axis_event_queue_int = current_s_event_queue; m_axis_event_type_int = current_s_event_type; m_axis_event_source_int = current_s_event_source; m_axis_event_valid_int = current_s_event_valid && m_axis_event_ready_int_reg && grant_valid; end // output datapath logic reg [QUEUE_INDEX_WIDTH-1:0] m_axis_event_queue_reg = {QUEUE_INDEX_WIDTH{1'b0}}; reg [EVENT_TYPE_WIDTH-1:0] m_axis_event_type_reg = {EVENT_TYPE_WIDTH{1'b0}}; reg [EVENT_SOURCE_WIDTH-1:0] m_axis_event_source_reg = {EVENT_SOURCE_WIDTH{1'b0}}; reg m_axis_event_valid_reg = 1'b0, m_axis_event_valid_next; reg [QUEUE_INDEX_WIDTH-1:0] temp_m_axis_event_queue_reg = {QUEUE_INDEX_WIDTH{1'b0}}; reg [EVENT_TYPE_WIDTH-1:0] temp_m_axis_event_type_reg = {EVENT_TYPE_WIDTH{1'b0}}; reg [EVENT_SOURCE_WIDTH-1:0] temp_m_axis_event_source_reg = {EVENT_SOURCE_WIDTH{1'b0}}; reg temp_m_axis_event_valid_reg = 1'b0, temp_m_axis_event_valid_next; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_axis_temp_to_output; assign m_axis_event_queue = m_axis_event_queue_reg; assign m_axis_event_type = m_axis_event_type_reg; assign m_axis_event_source = m_axis_event_source_reg; assign m_axis_event_valid = m_axis_event_valid_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign m_axis_event_ready_int_early = m_axis_event_ready || (!temp_m_axis_event_valid_reg && (!m_axis_event_valid_reg || !m_axis_event_valid_int)); always @* begin // transfer sink ready state to source m_axis_event_valid_next = m_axis_event_valid_reg; temp_m_axis_event_valid_next = temp_m_axis_event_valid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_temp_to_output = 1'b0; if (m_axis_event_ready_int_reg) begin // input is ready if (m_axis_event_ready || !m_axis_event_valid_reg) begin // output is ready or currently not valid, transfer data to output m_axis_event_valid_next = m_axis_event_valid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axis_event_valid_next = m_axis_event_valid_int; store_axis_int_to_temp = 1'b1; end end else if (m_axis_event_ready) begin // input is not ready, but output is ready m_axis_event_valid_next = temp_m_axis_event_valid_reg; temp_m_axis_event_valid_next = 1'b0; store_axis_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin m_axis_event_valid_reg <= 1'b0; m_axis_event_ready_int_reg <= 1'b0; temp_m_axis_event_valid_reg <= 1'b0; end else begin m_axis_event_valid_reg <= m_axis_event_valid_next; m_axis_event_ready_int_reg <= m_axis_event_ready_int_early; temp_m_axis_event_valid_reg <= temp_m_axis_event_valid_next; end // datapath if (store_axis_int_to_output) begin m_axis_event_queue_reg <= m_axis_event_queue_int; m_axis_event_type_reg <= m_axis_event_type_int; m_axis_event_source_reg <= m_axis_event_source_int; end else if (store_axis_temp_to_output) begin m_axis_event_queue_reg <= temp_m_axis_event_queue_reg; m_axis_event_type_reg <= temp_m_axis_event_type_reg; m_axis_event_source_reg <= temp_m_axis_event_source_reg; end if (store_axis_int_to_temp) begin temp_m_axis_event_queue_reg <= m_axis_event_queue_int; temp_m_axis_event_type_reg <= m_axis_event_type_int; temp_m_axis_event_source_reg <= m_axis_event_source_int; end end endmodule