/* Copyright (c) 2022 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * IRQ rate limit module */ module irq_rate_limit # ( // Interrupt configuration parameter IRQ_INDEX_WIDTH = 11 ) ( input wire clk, input wire rst, /* * Interrupt request input */ input wire [IRQ_INDEX_WIDTH-1:0] in_irq_index, input wire in_irq_valid, output wire in_irq_ready, /* * Interrupt request output */ output wire [IRQ_INDEX_WIDTH-1:0] out_irq_index, output wire out_irq_valid, input wire out_irq_ready, /* * Configuration */ input wire [15:0] prescale, input wire [15:0] min_interval ); localparam [1:0] STATE_INIT = 2'd0, STATE_IDLE = 2'd1, STATE_IRQ_IN = 2'd2, STATE_IRQ_OUT = 2'd3; reg [1:0] state_reg = STATE_INIT, state_next; reg [IRQ_INDEX_WIDTH-1:0] cur_index_reg = 0, cur_index_next; reg [IRQ_INDEX_WIDTH-1:0] irq_index_reg = 0, irq_index_next; reg mem_rd_en; reg mem_wr_en; reg [IRQ_INDEX_WIDTH-1:0] mem_addr; reg [17+1+1-1:0] mem_wr_data; reg [17+1+1-1:0] mem_rd_data_reg; reg mem_rd_data_valid_reg = 1'b0, mem_rd_data_valid_next; (* ramstyle = "no_rw_check, mlab" *) reg [17+1+1-1:0] mem_reg[2**IRQ_INDEX_WIDTH-1:0]; reg in_irq_ready_reg = 0, in_irq_ready_next; reg [IRQ_INDEX_WIDTH-1:0] out_irq_index_reg = 0, out_irq_index_next; reg out_irq_valid_reg = 0, out_irq_valid_next; assign in_irq_ready = in_irq_ready_reg; assign out_irq_index = out_irq_index_reg; assign out_irq_valid = out_irq_valid_reg; integer i; initial begin for (i = 0; i < 2**IRQ_INDEX_WIDTH; i = i + 1) begin mem_reg[i] = 0; end end reg [15:0] prescale_count_reg = 0; reg [16:0] time_count_reg = 0; always @(posedge clk) begin if (prescale_count_reg != 0) begin prescale_count_reg <= prescale_count_reg - 1; end else begin prescale_count_reg <= prescale; time_count_reg <= time_count_reg + 1; end if (rst) begin prescale_count_reg <= 0; time_count_reg <= 0; end end always @* begin state_next = STATE_INIT; cur_index_next = cur_index_reg; irq_index_next = irq_index_reg; in_irq_ready_next = 1'b0; out_irq_index_next = out_irq_index_reg; out_irq_valid_next = out_irq_valid_reg && !out_irq_ready; mem_rd_en = 1'b0; mem_wr_en = 1'b0; mem_addr = cur_index_reg; mem_wr_data = mem_rd_data_reg; mem_rd_data_valid_next = mem_rd_data_valid_reg; case (state_reg) STATE_INIT: begin // init - clear all timers mem_addr = cur_index_reg; mem_wr_data[0] = 1'b0; mem_wr_data[1] = 1'b0; mem_wr_data[2 +: 17] = 0; mem_wr_en = 1'b1; cur_index_next = cur_index_reg + 1; if (cur_index_next != 0) begin state_next = STATE_INIT; end else begin state_next = STATE_IDLE; end end STATE_IDLE: begin // idle - wait for requests and check timers in_irq_ready_next = 1'b1; if (in_irq_valid && in_irq_ready) begin // new interrupt request irq_index_next = in_irq_index; mem_addr = in_irq_index; mem_rd_en = 1'b1; mem_rd_data_valid_next = 1'b1; in_irq_ready_next = 1'b0; state_next = STATE_IRQ_IN; end else if (mem_rd_data_valid_reg && mem_rd_data_reg[1] && (mem_rd_data_reg[2 +: 17] - time_count_reg) >> 16 != 0) begin // timer expired in_irq_ready_next = 1'b0; state_next = STATE_IRQ_OUT; end else begin // read next timer irq_index_next = cur_index_reg; mem_addr = cur_index_reg; mem_rd_en = 1'b1; mem_rd_data_valid_next = 1'b1; cur_index_next = cur_index_reg + 1; state_next = STATE_IDLE; end end STATE_IRQ_IN: begin // pass through IRQ if (mem_rd_data_reg[1]) begin // timer running, set pending bit mem_addr = irq_index_reg; mem_wr_data[0] = 1'b1; mem_wr_data[1] = 1'b1; mem_wr_data[2 +: 17] = mem_rd_data_reg[2 +: 17]; mem_wr_en = 1'b1; mem_rd_data_valid_next = 1'b0; in_irq_ready_next = 1'b1; state_next = STATE_IDLE; end else if (!out_irq_valid || out_irq_ready) begin // timer not running, start timer and generate IRQ mem_addr = irq_index_reg; mem_wr_data[0] = 1'b0; mem_wr_data[1] = min_interval != 0; mem_wr_data[2 +: 17] = time_count_reg + min_interval; mem_wr_en = 1'b1; mem_rd_data_valid_next = 1'b0; out_irq_valid_next = 1'b1; out_irq_index_next = irq_index_reg; in_irq_ready_next = 1'b1; state_next = STATE_IDLE; end else begin state_next = STATE_IRQ_IN; end end STATE_IRQ_OUT: begin // handle timer expiration if (mem_rd_data_reg[0]) begin // pending bit set, generate IRQ and restart timer if (!out_irq_valid || out_irq_ready) begin mem_addr = irq_index_reg; mem_wr_data[0] = 1'b0; mem_wr_data[1] = min_interval != 0; mem_wr_data[2 +: 17] = time_count_reg + min_interval; mem_wr_en = 1'b1; mem_rd_data_valid_next = 1'b0; out_irq_valid_next = 1'b1; out_irq_index_next = irq_index_reg; in_irq_ready_next = 1'b1; state_next = STATE_IDLE; end else begin state_next = STATE_IRQ_OUT; end end else begin // pending bit not set, reset timer mem_addr = irq_index_reg; mem_wr_data[0] = 1'b0; mem_wr_data[1] = 1'b0; mem_wr_data[2 +: 17] = 0; mem_wr_en = 1'b1; mem_rd_data_valid_next = 1'b0; in_irq_ready_next = 1'b1; state_next = STATE_IDLE; end end endcase end always @(posedge clk) begin state_reg <= state_next; cur_index_reg <= cur_index_next; irq_index_reg <= irq_index_next; in_irq_ready_reg <= in_irq_ready_next; out_irq_index_reg <= out_irq_index_next; out_irq_valid_reg <= out_irq_valid_next; if (mem_wr_en) begin mem_reg[mem_addr] <= mem_wr_data; end else if (mem_rd_en) begin mem_rd_data_reg <= mem_reg[mem_addr]; end mem_rd_data_valid_reg <= mem_rd_data_valid_next; if (rst) begin state_reg <= STATE_INIT; cur_index_reg <= 0; in_irq_ready_reg <= 1'b0; out_irq_valid_reg <= 1'b0; mem_rd_data_valid_reg <= 1'b0; end end endmodule `resetall