/* Copyright (c) 2014 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4-Stream 4 port frame joiner */ module axis_frame_join_4 # ( parameter ENABLE_TAG = 1 ) ( input wire clk, input wire rst, /* * AXI inputs */ input wire [7:0] input_0_axis_tdata, input wire input_0_axis_tvalid, output wire input_0_axis_tready, input wire input_0_axis_tlast, input wire input_0_axis_tuser, input wire [7:0] input_1_axis_tdata, input wire input_1_axis_tvalid, output wire input_1_axis_tready, input wire input_1_axis_tlast, input wire input_1_axis_tuser, input wire [7:0] input_2_axis_tdata, input wire input_2_axis_tvalid, output wire input_2_axis_tready, input wire input_2_axis_tlast, input wire input_2_axis_tuser, input wire [7:0] input_3_axis_tdata, input wire input_3_axis_tvalid, output wire input_3_axis_tready, input wire input_3_axis_tlast, input wire input_3_axis_tuser, /* * AXI output */ output wire [7:0] output_axis_tdata, output wire output_axis_tvalid, input wire output_axis_tready, output wire output_axis_tlast, output wire output_axis_tuser, /* * Configuration */ input wire [15:0] tag, /* * Status signals */ output wire busy ); // state register localparam [1:0] STATE_IDLE = 2'd0, STATE_WRITE_TAG = 2'd1, STATE_TRANSFER = 2'd2; reg [1:0] state_reg = STATE_IDLE, state_next; reg [2:0] frame_ptr_reg = 0, frame_ptr_next; reg [1:0] port_sel_reg = 0, port_sel_next; reg busy_reg = 0, busy_next; reg [7:0] input_tdata; reg input_tvalid; reg input_tlast; reg input_tuser; reg output_tuser_reg = 0, output_tuser_next; reg input_0_axis_tready_reg = 0, input_0_axis_tready_next; reg input_1_axis_tready_reg = 0, input_1_axis_tready_next; reg input_2_axis_tready_reg = 0, input_2_axis_tready_next; reg input_3_axis_tready_reg = 0, input_3_axis_tready_next; // internal datapath reg [7:0] output_axis_tdata_int; reg output_axis_tvalid_int; reg output_axis_tready_int = 0; reg output_axis_tlast_int; reg output_axis_tuser_int; wire output_axis_tready_int_early; assign input_0_axis_tready = input_0_axis_tready_reg; assign input_1_axis_tready = input_1_axis_tready_reg; assign input_2_axis_tready = input_2_axis_tready_reg; assign input_3_axis_tready = input_3_axis_tready_reg; assign busy = busy_reg; always @* begin // input port mux case (port_sel_reg) 2'd0: begin input_tdata = input_0_axis_tdata; input_tvalid = input_0_axis_tvalid; input_tlast = input_0_axis_tlast; input_tuser = input_0_axis_tuser; end 2'd1: begin input_tdata = input_1_axis_tdata; input_tvalid = input_1_axis_tvalid; input_tlast = input_1_axis_tlast; input_tuser = input_1_axis_tuser; end 2'd2: begin input_tdata = input_2_axis_tdata; input_tvalid = input_2_axis_tvalid; input_tlast = input_2_axis_tlast; input_tuser = input_2_axis_tuser; end 2'd3: begin input_tdata = input_3_axis_tdata; input_tvalid = input_3_axis_tvalid; input_tlast = input_3_axis_tlast; input_tuser = input_3_axis_tuser; end endcase end always @* begin state_next = 2'bz; frame_ptr_next = frame_ptr_reg; port_sel_next = port_sel_reg; input_0_axis_tready_next = 0; input_1_axis_tready_next = 0; input_2_axis_tready_next = 0; input_3_axis_tready_next = 0; output_axis_tdata_int = 0; output_axis_tvalid_int = 0; output_axis_tlast_int = 0; output_axis_tuser_int = 0; output_tuser_next = output_tuser_reg; case (state_reg) STATE_IDLE: begin // idle state - wait for data frame_ptr_next = 0; port_sel_next = 0; output_tuser_next = 0; if (ENABLE_TAG) begin // next cycle if started will send tag, so do not enable input input_0_axis_tready_next = 0; end else begin // next cycle if started will send data, so enable input input_0_axis_tready_next = output_axis_tready_int_early; end if (input_0_axis_tvalid) begin // input 0 valid; start transferring data if (ENABLE_TAG) begin // tag enabled, so transmit it if (output_axis_tready_int) begin // output is ready, so short-circuit first tag byte frame_ptr_next = 1; output_axis_tdata_int = tag[15:8]; output_axis_tvalid_int = 1; end state_next = STATE_WRITE_TAG; end else begin // tag disabled, so transmit data if (output_axis_tready_int) begin // output is ready, so short-circuit first data byte output_axis_tdata_int = input_0_axis_tdata; output_axis_tvalid_int = 1; end state_next = STATE_TRANSFER; end end else begin state_next = STATE_IDLE; end end STATE_WRITE_TAG: begin // write tag data if (output_axis_tready_int) begin // output ready, so send tag byte state_next = STATE_WRITE_TAG; frame_ptr_next = frame_ptr_reg + 1; output_axis_tvalid_int = 1; case (frame_ptr_reg) 2'd0: output_axis_tdata_int = tag[15:8]; 2'd1: begin // last tag byte - get ready to send data, enable input if ready output_axis_tdata_int = tag[7:0]; input_0_axis_tready_next = output_axis_tready_int_early; state_next = STATE_TRANSFER; end endcase end else begin state_next = STATE_WRITE_TAG; end end STATE_TRANSFER: begin // transfer input data // set ready for current input case (port_sel_reg) 2'd0: input_0_axis_tready_next = output_axis_tready_int_early; 2'd1: input_1_axis_tready_next = output_axis_tready_int_early; 2'd2: input_2_axis_tready_next = output_axis_tready_int_early; 2'd3: input_3_axis_tready_next = output_axis_tready_int_early; endcase if (input_tvalid & output_axis_tready_int) begin // output ready, transfer byte state_next = STATE_TRANSFER; output_axis_tdata_int = input_tdata; output_axis_tvalid_int = input_tvalid; if (input_tlast) begin // last flag received, switch to next port port_sel_next = port_sel_reg + 1; // save tuser - assert tuser out if ANY tuser asserts received output_tuser_next = output_tuser_next | input_tuser; // disable input input_0_axis_tready_next = 0; input_1_axis_tready_next = 0; input_2_axis_tready_next = 0; input_3_axis_tready_next = 0; if (port_sel_reg == 3) begin // last port - send tlast and tuser and revert to idle output_axis_tlast_int = 1; output_axis_tuser_int = output_tuser_next; state_next = STATE_IDLE; end else begin // otherwise, disable enable next port case (port_sel_next) 2'd0: input_0_axis_tready_next = output_axis_tready_int_early; 2'd1: input_1_axis_tready_next = output_axis_tready_int_early; 2'd2: input_2_axis_tready_next = output_axis_tready_int_early; 2'd3: input_3_axis_tready_next = output_axis_tready_int_early; endcase end end end else begin state_next = STATE_TRANSFER; end end endcase end always @(posedge clk or posedge rst) begin if (rst) begin state_reg <= STATE_IDLE; frame_ptr_reg <= 0; port_sel_reg <= 0; input_0_axis_tready_reg <= 0; input_1_axis_tready_reg <= 0; input_2_axis_tready_reg <= 0; input_3_axis_tready_reg <= 0; output_tuser_reg <= 0; busy_reg <= 0; end else begin state_reg <= state_next; frame_ptr_reg <= frame_ptr_next; port_sel_reg <= port_sel_next; input_0_axis_tready_reg <= input_0_axis_tready_next; input_1_axis_tready_reg <= input_1_axis_tready_next; input_2_axis_tready_reg <= input_2_axis_tready_next; input_3_axis_tready_reg <= input_3_axis_tready_next; output_tuser_reg <= output_tuser_next; busy_reg <= state_next != STATE_IDLE; end end // output datapath logic reg [7:0] output_axis_tdata_reg = 0; reg output_axis_tvalid_reg = 0; reg output_axis_tlast_reg = 0; reg output_axis_tuser_reg = 0; reg [7:0] temp_axis_tdata_reg = 0; reg temp_axis_tvalid_reg = 0; reg temp_axis_tlast_reg = 0; reg temp_axis_tuser_reg = 0; assign output_axis_tdata = output_axis_tdata_reg; assign output_axis_tvalid = output_axis_tvalid_reg; assign output_axis_tlast = output_axis_tlast_reg; assign output_axis_tuser = output_axis_tuser_reg; // enable ready input next cycle if output is ready or if there is space in both output registers or if there is space in the temp register that will not be filled next cycle assign output_axis_tready_int_early = output_axis_tready | (~temp_axis_tvalid_reg & ~output_axis_tvalid_reg) | (~temp_axis_tvalid_reg & ~output_axis_tvalid_int); always @(posedge clk or posedge rst) begin if (rst) begin output_axis_tdata_reg <= 0; output_axis_tvalid_reg <= 0; output_axis_tlast_reg <= 0; output_axis_tuser_reg <= 0; output_axis_tready_int <= 0; temp_axis_tdata_reg <= 0; temp_axis_tvalid_reg <= 0; temp_axis_tlast_reg <= 0; temp_axis_tuser_reg <= 0; end else begin // transfer sink ready state to source output_axis_tready_int <= output_axis_tready_int_early; if (output_axis_tready_int) begin // input is ready if (output_axis_tready | ~output_axis_tvalid_reg) begin // output is ready or currently not valid, transfer data to output output_axis_tdata_reg <= output_axis_tdata_int; output_axis_tvalid_reg <= output_axis_tvalid_int; output_axis_tlast_reg <= output_axis_tlast_int; output_axis_tuser_reg <= output_axis_tuser_int; end else begin // output is not ready, store input in temp temp_axis_tdata_reg <= output_axis_tdata_int; temp_axis_tvalid_reg <= output_axis_tvalid_int; temp_axis_tlast_reg <= output_axis_tlast_int; temp_axis_tuser_reg <= output_axis_tuser_int; end end else if (output_axis_tready) begin // input is not ready, but output is ready output_axis_tdata_reg <= temp_axis_tdata_reg; output_axis_tvalid_reg <= temp_axis_tvalid_reg; output_axis_tlast_reg <= temp_axis_tlast_reg; output_axis_tuser_reg <= temp_axis_tuser_reg; temp_axis_tdata_reg <= 0; temp_axis_tvalid_reg <= 0; temp_axis_tlast_reg <= 0; temp_axis_tuser_reg <= 0; end end end endmodule