/* Copyright 2021, The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF CALIFORNIA OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of The Regents of the University of California. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * RX FIFO */ module rx_fifo # ( // FIFO depth in words (each FIFO) // KEEP_WIDTH words per cycle if KEEP_ENABLE set // Rounded up to nearest power of 2 cycles parameter FIFO_DEPTH = 4096, // Number of AXI stream inputs parameter PORTS = 4, // Width of input AXI stream interfaces in bits parameter S_DATA_WIDTH = 8, // Propagate tkeep signal parameter S_KEEP_ENABLE = (S_DATA_WIDTH>8), // tkeep signal width (words per cycle) parameter S_KEEP_WIDTH = (S_DATA_WIDTH/8), // Width of output AXI stream interface in bits parameter M_DATA_WIDTH = 8*PORTS, // Propagate tkeep signal parameter M_KEEP_ENABLE = (M_DATA_WIDTH>8), // tkeep signal width (words per cycle) parameter M_KEEP_WIDTH = (M_DATA_WIDTH/8), // Propagate tid signal parameter ID_ENABLE = 1, // input tid signal width parameter S_ID_WIDTH = 1, // output tid signal width parameter M_ID_WIDTH = PORTS > 1 ? $clog2(PORTS) : 1, // Propagate tdest signal parameter DEST_ENABLE = 0, // tdest signal width parameter DEST_WIDTH = 8, // Propagate tuser signal parameter USER_ENABLE = 1, // tuser signal width parameter USER_WIDTH = 1, // number of output pipeline registers parameter PIPELINE_OUTPUT = 2 ) ( input wire clk, input wire rst, /* * AXI Stream inputs */ input wire [PORTS*S_DATA_WIDTH-1:0] s_axis_tdata, input wire [PORTS*S_KEEP_WIDTH-1:0] s_axis_tkeep, input wire [PORTS-1:0] s_axis_tvalid, output wire [PORTS-1:0] s_axis_tready, input wire [PORTS-1:0] s_axis_tlast, input wire [PORTS*S_ID_WIDTH-1:0] s_axis_tid, input wire [PORTS*DEST_WIDTH-1:0] s_axis_tdest, input wire [PORTS*USER_WIDTH-1:0] s_axis_tuser, /* * AXI Stream output */ output wire [M_DATA_WIDTH-1:0] m_axis_tdata, output wire [M_KEEP_WIDTH-1:0] m_axis_tkeep, output wire m_axis_tvalid, input wire m_axis_tready, output wire m_axis_tlast, output wire [M_ID_WIDTH-1:0] m_axis_tid, output wire [DEST_WIDTH-1:0] m_axis_tdest, output wire [USER_WIDTH-1:0] m_axis_tuser, /* * Status */ output wire [PORTS-1:0] status_overflow, output wire [PORTS-1:0] status_bad_frame, output wire [PORTS-1:0] status_good_frame ); wire [PORTS*M_DATA_WIDTH-1:0] axis_fifo_tdata; wire [PORTS*M_KEEP_WIDTH-1:0] axis_fifo_tkeep; wire [PORTS-1:0] axis_fifo_tvalid; wire [PORTS-1:0] axis_fifo_tready; wire [PORTS-1:0] axis_fifo_tlast; wire [PORTS*S_ID_WIDTH-1:0] axis_fifo_tid; wire [PORTS*DEST_WIDTH-1:0] axis_fifo_tdest; wire [PORTS*USER_WIDTH-1:0] axis_fifo_tuser; generate genvar n; for (n = 0; n < PORTS; n = n + 1) begin : fifo axis_fifo_adapter #( .DEPTH(FIFO_DEPTH), .S_DATA_WIDTH(S_DATA_WIDTH), .S_KEEP_ENABLE(S_KEEP_ENABLE), .S_KEEP_WIDTH(S_KEEP_WIDTH), .M_DATA_WIDTH(M_DATA_WIDTH), .M_KEEP_ENABLE(M_KEEP_ENABLE), .M_KEEP_WIDTH(M_KEEP_WIDTH), .ID_ENABLE(ID_ENABLE), .ID_WIDTH(S_ID_WIDTH), .DEST_ENABLE(DEST_ENABLE), .DEST_WIDTH(DEST_WIDTH), .USER_ENABLE(USER_ENABLE), .USER_WIDTH(USER_WIDTH), .PIPELINE_OUTPUT(PIPELINE_OUTPUT), .FRAME_FIFO(1), .USER_BAD_FRAME_VALUE(1'b1), .USER_BAD_FRAME_MASK(1'b1), .DROP_BAD_FRAME(USER_ENABLE), .DROP_WHEN_FULL(0) ) fifo_inst ( .clk(clk), .rst(rst), // AXI input .s_axis_tdata(s_axis_tdata[n*S_DATA_WIDTH +: S_DATA_WIDTH]), .s_axis_tkeep(s_axis_tkeep[n*S_KEEP_WIDTH +: S_KEEP_WIDTH]), .s_axis_tvalid(s_axis_tvalid[n +: 1]), .s_axis_tready(s_axis_tready[n +: 1]), .s_axis_tlast(s_axis_tlast[n +: 1]), .s_axis_tid(s_axis_tid[n*S_ID_WIDTH +: S_ID_WIDTH]), .s_axis_tdest(s_axis_tdest[n*DEST_WIDTH +: DEST_WIDTH]), .s_axis_tuser(s_axis_tuser[n*USER_WIDTH +: USER_WIDTH]), // AXI output .m_axis_tdata(axis_fifo_tdata[n*M_DATA_WIDTH +: M_DATA_WIDTH]), .m_axis_tkeep(axis_fifo_tkeep[n*M_KEEP_WIDTH +: M_KEEP_WIDTH]), .m_axis_tvalid(axis_fifo_tvalid[n +: 1]), .m_axis_tready(axis_fifo_tready[n +: 1]), .m_axis_tlast(axis_fifo_tlast[n +: 1]), .m_axis_tid(axis_fifo_tid[n*S_ID_WIDTH +: S_ID_WIDTH]), .m_axis_tdest(axis_fifo_tdest[n*DEST_WIDTH +: DEST_WIDTH]), .m_axis_tuser(axis_fifo_tuser[n*USER_WIDTH +: USER_WIDTH]), // Status .status_overflow(status_overflow), .status_bad_frame(status_bad_frame), .status_good_frame(status_good_frame) ); end if (PORTS > 1) begin : mux axis_arb_mux #( .S_COUNT(PORTS), .DATA_WIDTH(M_DATA_WIDTH), .KEEP_ENABLE(M_KEEP_ENABLE), .KEEP_WIDTH(M_KEEP_WIDTH), .ID_ENABLE(ID_ENABLE), .S_ID_WIDTH(S_ID_WIDTH), .M_ID_WIDTH(M_ID_WIDTH), .DEST_ENABLE(DEST_ENABLE), .DEST_WIDTH(DEST_WIDTH), .USER_ENABLE(USER_ENABLE), .USER_WIDTH(USER_WIDTH), .LAST_ENABLE(1'b1), .UPDATE_TID(1), .ARB_TYPE_ROUND_ROBIN(1'b1), .ARB_LSB_HIGH_PRIORITY(1'b1) ) mux_inst ( .clk(clk), .rst(rst), // AXI Stream inputs .s_axis_tdata(axis_fifo_tdata), .s_axis_tkeep(axis_fifo_tkeep), .s_axis_tvalid(axis_fifo_tvalid), .s_axis_tready(axis_fifo_tready), .s_axis_tlast(axis_fifo_tlast), .s_axis_tid(axis_fifo_tid), .s_axis_tdest(axis_fifo_tdest), .s_axis_tuser(axis_fifo_tuser), // AXI Stream output .m_axis_tdata(m_axis_tdata), .m_axis_tkeep(m_axis_tkeep), .m_axis_tvalid(m_axis_tvalid), .m_axis_tready(m_axis_tready), .m_axis_tlast(m_axis_tlast), .m_axis_tid(m_axis_tid), .m_axis_tdest(m_axis_tdest), .m_axis_tuser(m_axis_tuser) ); end else begin assign m_axis_tdata = axis_fifo_tdata; assign m_axis_tkeep = axis_fifo_tkeep; assign m_axis_tvalid = axis_fifo_tvalid; assign axis_fifo_tready = m_axis_tready; assign m_axis_tlast = axis_fifo_tlast; assign m_axis_tid = axis_fifo_tid; assign m_axis_tdest = axis_fifo_tdest; assign m_axis_tuser = axis_fifo_tuser; end endgenerate endmodule `resetall