/* Copyright (c) 2016-2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4-Stream consistent overhead byte stuffing (COBS) decoder */ module axis_cobs_decode ( input wire clk, input wire rst, /* * AXI input */ input wire [7:0] s_axis_tdata, input wire s_axis_tvalid, output wire s_axis_tready, input wire s_axis_tlast, input wire s_axis_tuser, /* * AXI output */ output wire [7:0] m_axis_tdata, output wire m_axis_tvalid, input wire m_axis_tready, output wire m_axis_tlast, output wire m_axis_tuser ); // state register localparam [1:0] STATE_IDLE = 2'd0, STATE_SEGMENT = 2'd1, STATE_NEXT_SEGMENT = 2'd2; reg [1:0] state_reg = STATE_IDLE, state_next; reg [7:0] count_reg = 8'd0, count_next; reg suppress_zero_reg = 1'b0, suppress_zero_next; reg [7:0] temp_tdata_reg = 8'd0, temp_tdata_next; reg temp_tvalid_reg = 1'b0, temp_tvalid_next; // internal datapath reg [7:0] m_axis_tdata_int; reg m_axis_tvalid_int; reg m_axis_tready_int_reg = 1'b0; reg m_axis_tlast_int; reg m_axis_tuser_int; wire m_axis_tready_int_early; reg s_axis_tready_reg = 1'b0, s_axis_tready_next; assign s_axis_tready = s_axis_tready_reg; always @* begin state_next = STATE_IDLE; count_next = count_reg; suppress_zero_next = suppress_zero_reg; temp_tdata_next = temp_tdata_reg; temp_tvalid_next = temp_tvalid_reg; m_axis_tdata_int = 8'd0; m_axis_tvalid_int = 1'b0; m_axis_tlast_int = 1'b0; m_axis_tuser_int = 1'b0; s_axis_tready_next = 1'b0; case (state_reg) STATE_IDLE: begin // idle state s_axis_tready_next = m_axis_tready_int_early || !temp_tvalid_reg; // output final word m_axis_tdata_int = temp_tdata_reg; m_axis_tvalid_int = temp_tvalid_reg; m_axis_tlast_int = temp_tvalid_reg; temp_tvalid_next = temp_tvalid_reg && !m_axis_tready_int_reg; if (s_axis_tready && s_axis_tvalid) begin // valid input data // skip any leading zeros if (s_axis_tdata != 8'd0) begin // store count value and zero suppress count_next = s_axis_tdata-1; suppress_zero_next = (s_axis_tdata == 8'd255); s_axis_tready_next = m_axis_tready_int_early; if (s_axis_tdata == 8'd1) begin // next byte will be count value state_next = STATE_NEXT_SEGMENT; end else begin // next byte will be data state_next = STATE_SEGMENT; end end else begin state_next = STATE_IDLE; end end else begin state_next = STATE_IDLE; end end STATE_SEGMENT: begin // receive segment s_axis_tready_next = m_axis_tready_int_early; if (s_axis_tready && s_axis_tvalid) begin // valid input data // store in temp register temp_tdata_next = s_axis_tdata; temp_tvalid_next = 1'b1; // move temp to output m_axis_tdata_int = temp_tdata_reg; m_axis_tvalid_int = temp_tvalid_reg; // decrement count count_next = count_reg - 1; if (s_axis_tdata == 8'd0) begin // got a zero byte in a frame - mark it as an error and re-sync temp_tvalid_next = 1'b0; m_axis_tvalid_int = 1'b1; m_axis_tuser_int = 1'b1; m_axis_tlast_int = 1'b1; s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end else if (s_axis_tlast) begin // end of frame if (count_reg == 8'd1 && !s_axis_tuser) begin // end of frame indication at correct time, go to idle to output final byte state_next = STATE_IDLE; end else begin // end of frame indication at invalid time or tuser assert, so mark as an error and re-sync temp_tvalid_next = 1'b0; m_axis_tvalid_int = 1'b1; m_axis_tuser_int = 1'b1; m_axis_tlast_int = 1'b1; s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end else if (count_reg == 8'd1) begin // next byte will be count value state_next = STATE_NEXT_SEGMENT; end else begin // next byte will be data state_next = STATE_SEGMENT; end end else begin state_next = STATE_SEGMENT; end end STATE_NEXT_SEGMENT: begin // next segment s_axis_tready_next = m_axis_tready_int_early; if (s_axis_tready && s_axis_tvalid) begin // valid input data // store zero in temp if not suppressed temp_tdata_next = 8'd0; temp_tvalid_next = !suppress_zero_reg; // move temp to output m_axis_tdata_int = temp_tdata_reg; m_axis_tvalid_int = temp_tvalid_reg; if (s_axis_tdata == 8'd0) begin // got a zero byte delineating the end of the frame, so mark as such and re-sync temp_tvalid_next = 1'b0; m_axis_tuser_int = s_axis_tuser; m_axis_tlast_int = 1'b1; s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end else if (s_axis_tlast) begin if (s_axis_tdata == 8'd1 && !s_axis_tuser) begin // end of frame indication at correct time, go to idle to output final byte state_next = STATE_IDLE; end else begin // end of frame indication at invalid time or tuser assert, so mark as an error and re-sync temp_tvalid_next = 1'b0; m_axis_tvalid_int = 1'b1; m_axis_tuser_int = 1'b1; m_axis_tlast_int = 1'b1; s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end else begin // otherwise, store count value and zero suppress count_next = s_axis_tdata-1; suppress_zero_next = (s_axis_tdata == 8'd255); s_axis_tready_next = m_axis_tready_int_early; if (s_axis_tdata == 8'd1) begin // next byte will be count value state_next = STATE_NEXT_SEGMENT; end else begin // next byte will be data state_next = STATE_SEGMENT; end end end else begin state_next = STATE_NEXT_SEGMENT; end end endcase end always @(posedge clk) begin state_reg <= state_next; count_reg <= count_next; suppress_zero_reg <= suppress_zero_next; temp_tdata_reg <= temp_tdata_next; temp_tvalid_reg <= temp_tvalid_next; s_axis_tready_reg <= s_axis_tready_next; if (rst) begin state_reg <= STATE_IDLE; temp_tvalid_reg <= 1'b0; s_axis_tready_reg <= 1'b0; end end // output datapath logic reg [7:0] m_axis_tdata_reg = 8'd0; reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next; reg m_axis_tlast_reg = 1'b0; reg m_axis_tuser_reg = 1'b0; reg [7:0] temp_m_axis_tdata_reg = 8'd0; reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next; reg temp_m_axis_tlast_reg = 1'b0; reg temp_m_axis_tuser_reg = 1'b0; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_axis_temp_to_output; assign m_axis_tdata = m_axis_tdata_reg; assign m_axis_tvalid = m_axis_tvalid_reg; assign m_axis_tlast = m_axis_tlast_reg; assign m_axis_tuser = m_axis_tuser_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int)); always @* begin // transfer sink ready state to source m_axis_tvalid_next = m_axis_tvalid_reg; temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_temp_to_output = 1'b0; if (m_axis_tready_int_reg) begin // input is ready if (m_axis_tready || !m_axis_tvalid_reg) begin // output is ready or currently not valid, transfer data to output m_axis_tvalid_next = m_axis_tvalid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axis_tvalid_next = m_axis_tvalid_int; store_axis_int_to_temp = 1'b1; end end else if (m_axis_tready) begin // input is not ready, but output is ready m_axis_tvalid_next = temp_m_axis_tvalid_reg; temp_m_axis_tvalid_next = 1'b0; store_axis_temp_to_output = 1'b1; end end always @(posedge clk) begin m_axis_tvalid_reg <= m_axis_tvalid_next; m_axis_tready_int_reg <= m_axis_tready_int_early; temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next; // datapath if (store_axis_int_to_output) begin m_axis_tdata_reg <= m_axis_tdata_int; m_axis_tlast_reg <= m_axis_tlast_int; m_axis_tuser_reg <= m_axis_tuser_int; end else if (store_axis_temp_to_output) begin m_axis_tdata_reg <= temp_m_axis_tdata_reg; m_axis_tlast_reg <= temp_m_axis_tlast_reg; m_axis_tuser_reg <= temp_m_axis_tuser_reg; end if (store_axis_int_to_temp) begin temp_m_axis_tdata_reg <= m_axis_tdata_int; temp_m_axis_tlast_reg <= m_axis_tlast_int; temp_m_axis_tuser_reg <= m_axis_tuser_int; end if (rst) begin m_axis_tvalid_reg <= 1'b0; m_axis_tready_int_reg <= 1'b0; temp_m_axis_tvalid_reg <= 1'b0; end end endmodule `resetall