/* Copyright (c) 2021 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * PCIe TLP multiplexer */ module pcie_tlp_mux # ( // Input count parameter PORTS = 2, // TLP segment count parameter TLP_SEG_COUNT = 1, // TLP segment data width parameter TLP_SEG_DATA_WIDTH = 256, // TLP segment strobe width parameter TLP_SEG_STRB_WIDTH = TLP_SEG_DATA_WIDTH/32, // TLP segment header width parameter TLP_SEG_HDR_WIDTH = 128, // select round robin arbitration parameter ARB_TYPE_ROUND_ROBIN = 0, // LSB priority selection parameter ARB_LSB_HIGH_PRIORITY = 1 ) ( input wire clk, input wire rst, /* * TLP input */ input wire [PORTS*TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] in_tlp_data, input wire [PORTS*TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] in_tlp_strb, input wire [PORTS*TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] in_tlp_hdr, input wire [PORTS*TLP_SEG_COUNT*3-1:0] in_tlp_bar_id, input wire [PORTS*TLP_SEG_COUNT*8-1:0] in_tlp_func_num, input wire [PORTS*TLP_SEG_COUNT*4-1:0] in_tlp_error, input wire [PORTS*TLP_SEG_COUNT-1:0] in_tlp_valid, input wire [PORTS*TLP_SEG_COUNT-1:0] in_tlp_sop, input wire [PORTS*TLP_SEG_COUNT-1:0] in_tlp_eop, output wire [PORTS-1:0] in_tlp_ready, /* * TLP output */ output wire [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] out_tlp_data, output wire [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] out_tlp_strb, output wire [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] out_tlp_hdr, output wire [TLP_SEG_COUNT*3-1:0] out_tlp_bar_id, output wire [TLP_SEG_COUNT*8-1:0] out_tlp_func_num, output wire [TLP_SEG_COUNT*4-1:0] out_tlp_error, output wire [TLP_SEG_COUNT-1:0] out_tlp_valid, output wire [TLP_SEG_COUNT-1:0] out_tlp_sop, output wire [TLP_SEG_COUNT-1:0] out_tlp_eop, input wire out_tlp_ready ); parameter CL_PORTS = $clog2(PORTS); // check configuration initial begin if (TLP_SEG_COUNT != 1) begin $error("Error: TLP segment count must be 1 (instance %m)"); $finish; end if (TLP_SEG_HDR_WIDTH != 128) begin $error("Error: TLP segment header width must be 128 (instance %m)"); $finish; end if (TLP_SEG_STRB_WIDTH*32 != TLP_SEG_DATA_WIDTH) begin $error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)"); $finish; end end wire [PORTS-1:0] request; wire [PORTS-1:0] acknowledge; wire [PORTS-1:0] grant; wire grant_valid; wire [CL_PORTS-1:0] grant_encoded; // internal datapath reg [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] out_tlp_data_int; reg [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] out_tlp_strb_int; reg [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] out_tlp_hdr_int; reg [TLP_SEG_COUNT*3-1:0] out_tlp_bar_id_int; reg [TLP_SEG_COUNT*8-1:0] out_tlp_func_num_int; reg [TLP_SEG_COUNT*4-1:0] out_tlp_error_int; reg [TLP_SEG_COUNT-1:0] out_tlp_valid_int; reg [TLP_SEG_COUNT-1:0] out_tlp_sop_int; reg [TLP_SEG_COUNT-1:0] out_tlp_eop_int; reg out_tlp_ready_int_reg = 1'b0; wire out_tlp_ready_int_early; assign in_tlp_ready = (out_tlp_ready_int_reg && grant_valid) << grant_encoded; // mux for incoming packet wire [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] current_in_tlp_data = in_tlp_data[grant_encoded*TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH +: TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH]; wire [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] current_in_tlp_strb = in_tlp_strb[grant_encoded*TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH +: TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH]; wire [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] current_in_tlp_hdr = in_tlp_hdr[grant_encoded*TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH +: TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH]; wire [TLP_SEG_COUNT*3-1:0] current_in_tlp_bar_id = in_tlp_bar_id[grant_encoded*TLP_SEG_COUNT*3 +: TLP_SEG_COUNT*3]; wire [TLP_SEG_COUNT*8-1:0] current_in_tlp_func_num = in_tlp_func_num[grant_encoded*TLP_SEG_COUNT*8 +: TLP_SEG_COUNT*8]; wire [TLP_SEG_COUNT*4-1:0] current_in_tlp_error = in_tlp_error[grant_encoded*TLP_SEG_COUNT*4 +: TLP_SEG_COUNT*4]; wire [TLP_SEG_COUNT-1:0] current_in_tlp_valid = in_tlp_valid[grant_encoded*TLP_SEG_COUNT +: TLP_SEG_COUNT]; wire [TLP_SEG_COUNT-1:0] current_in_tlp_sop = in_tlp_sop[grant_encoded*TLP_SEG_COUNT +: TLP_SEG_COUNT]; wire [TLP_SEG_COUNT-1:0] current_in_tlp_eop = in_tlp_eop[grant_encoded*TLP_SEG_COUNT +: TLP_SEG_COUNT]; wire current_in_tlp_ready = in_tlp_ready[grant_encoded]; // arbiter instance arbiter #( .PORTS(PORTS), .ARB_TYPE_ROUND_ROBIN(ARB_TYPE_ROUND_ROBIN), .ARB_BLOCK(1), .ARB_BLOCK_ACK(1), .ARB_LSB_HIGH_PRIORITY(ARB_LSB_HIGH_PRIORITY) ) arb_inst ( .clk(clk), .rst(rst), .request(request), .acknowledge(acknowledge), .grant(grant), .grant_valid(grant_valid), .grant_encoded(grant_encoded) ); assign request = in_tlp_valid & ~grant; assign acknowledge = grant & in_tlp_valid & in_tlp_ready & in_tlp_eop; always @* begin // pass through selected packet data out_tlp_data_int = current_in_tlp_data; out_tlp_strb_int = current_in_tlp_strb; out_tlp_hdr_int = current_in_tlp_hdr; out_tlp_bar_id_int = current_in_tlp_bar_id; out_tlp_func_num_int = current_in_tlp_func_num; out_tlp_error_int = current_in_tlp_error; out_tlp_valid_int = out_tlp_ready_int_reg && grant_valid ? current_in_tlp_valid : 0; out_tlp_sop_int = current_in_tlp_sop; out_tlp_eop_int = current_in_tlp_eop; end // output datapath logic reg [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] out_tlp_data_reg = 0; reg [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] out_tlp_strb_reg = 0; reg [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] out_tlp_hdr_reg = 0; reg [TLP_SEG_COUNT*3-1:0] out_tlp_bar_id_reg = 0; reg [TLP_SEG_COUNT*8-1:0] out_tlp_func_num_reg = 0; reg [TLP_SEG_COUNT*4-1:0] out_tlp_error_reg = 0; reg [TLP_SEG_COUNT-1:0] out_tlp_valid_reg = 0, out_tlp_valid_next; reg [TLP_SEG_COUNT-1:0] out_tlp_sop_reg = 0; reg [TLP_SEG_COUNT-1:0] out_tlp_eop_reg = 0; reg [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] temp_out_tlp_data_reg = 0; reg [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] temp_out_tlp_strb_reg = 0; reg [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] temp_out_tlp_hdr_reg = 0; reg [TLP_SEG_COUNT*3-1:0] temp_out_tlp_bar_id_reg = 0; reg [TLP_SEG_COUNT*8-1:0] temp_out_tlp_func_num_reg = 0; reg [TLP_SEG_COUNT*4-1:0] temp_out_tlp_error_reg = 0; reg [TLP_SEG_COUNT-1:0] temp_out_tlp_valid_reg = 0, temp_out_tlp_valid_next; reg [TLP_SEG_COUNT-1:0] temp_out_tlp_sop_reg = 0; reg [TLP_SEG_COUNT-1:0] temp_out_tlp_eop_reg = 0; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_axis_temp_to_output; assign out_tlp_data = out_tlp_data_reg; assign out_tlp_strb = out_tlp_strb_reg; assign out_tlp_hdr = out_tlp_hdr_reg; assign out_tlp_bar_id = out_tlp_bar_id_reg; assign out_tlp_func_num = out_tlp_func_num_reg; assign out_tlp_error = out_tlp_error_reg; assign out_tlp_valid = out_tlp_valid_reg; assign out_tlp_sop = out_tlp_sop_reg; assign out_tlp_eop = out_tlp_eop_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign out_tlp_ready_int_early = out_tlp_ready || (!temp_out_tlp_valid_reg && (!out_tlp_valid_reg || !out_tlp_valid_int)); always @* begin // transfer sink ready state to source out_tlp_valid_next = out_tlp_valid_reg; temp_out_tlp_valid_next = temp_out_tlp_valid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_temp_to_output = 1'b0; if (out_tlp_ready_int_reg) begin // input is ready if (out_tlp_ready || !out_tlp_valid_reg) begin // output is ready or currently not valid, transfer data to output out_tlp_valid_next = out_tlp_valid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_out_tlp_valid_next = out_tlp_valid_int; store_axis_int_to_temp = 1'b1; end end else if (out_tlp_ready) begin // input is not ready, but output is ready out_tlp_valid_next = temp_out_tlp_valid_reg; temp_out_tlp_valid_next = 1'b0; store_axis_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin out_tlp_valid_reg <= 1'b0; out_tlp_ready_int_reg <= 1'b0; temp_out_tlp_valid_reg <= 1'b0; end else begin out_tlp_valid_reg <= out_tlp_valid_next; out_tlp_ready_int_reg <= out_tlp_ready_int_early; temp_out_tlp_valid_reg <= temp_out_tlp_valid_next; end // datapath if (store_axis_int_to_output) begin out_tlp_data_reg <= out_tlp_data_int; out_tlp_strb_reg <= out_tlp_strb_int; out_tlp_hdr_reg <= out_tlp_hdr_int; out_tlp_bar_id_reg <= out_tlp_bar_id_int; out_tlp_func_num_reg <= out_tlp_func_num_int; out_tlp_error_reg <= out_tlp_error_int; out_tlp_sop_reg <= out_tlp_sop_int; out_tlp_eop_reg <= out_tlp_eop_int; end else if (store_axis_temp_to_output) begin out_tlp_data_reg <= temp_out_tlp_data_reg; out_tlp_strb_reg <= temp_out_tlp_strb_reg; out_tlp_hdr_reg <= temp_out_tlp_hdr_reg; out_tlp_bar_id_reg <= temp_out_tlp_bar_id_reg; out_tlp_func_num_reg <= temp_out_tlp_func_num_reg; out_tlp_error_reg <= temp_out_tlp_error_reg; out_tlp_sop_reg <= temp_out_tlp_sop_reg; out_tlp_eop_reg <= temp_out_tlp_eop_reg; end if (store_axis_int_to_temp) begin temp_out_tlp_data_reg <= out_tlp_data_int; temp_out_tlp_strb_reg <= out_tlp_strb_int; temp_out_tlp_hdr_reg <= out_tlp_hdr_int; temp_out_tlp_bar_id_reg <= out_tlp_bar_id_int; temp_out_tlp_func_num_reg <= out_tlp_func_num_int; temp_out_tlp_error_reg <= out_tlp_error_int; temp_out_tlp_sop_reg <= out_tlp_sop_int; temp_out_tlp_eop_reg <= out_tlp_eop_int; end end endmodule