/* Copyright (c) 2019 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * PTP clock CDC (clock domain crossing) module */ module ptp_clock_cdc # ( parameter TS_WIDTH = 96, parameter NS_WIDTH = 4, parameter FNS_WIDTH = 16, parameter INPUT_PERIOD_NS = 4'h6, parameter INPUT_PERIOD_FNS = 16'h6666, parameter OUTPUT_PERIOD_NS = 4'h6, parameter OUTPUT_PERIOD_FNS = 16'h6666, parameter USE_SAMPLE_CLOCK = 1, parameter LOG_FIFO_DEPTH = 3, parameter LOG_RATE = 3 ) ( input wire input_clk, input wire input_rst, input wire output_clk, input wire output_rst, input wire sample_clk, /* * Timestamp inputs from source PTP clock */ input wire [TS_WIDTH-1:0] input_ts, /* * Timestamp outputs */ output wire [TS_WIDTH-1:0] output_ts, output wire output_ts_step, /* * PPS output */ output wire output_pps ); // bus width assertions initial begin if (TS_WIDTH != 64 && TS_WIDTH != 96) begin $error("Error: Timestamp width must be 64 or 96"); $finish; end end parameter TS_NS_WIDTH = TS_WIDTH == 96 ? 30 : 48; parameter FIFO_ADDR_WIDTH = LOG_FIFO_DEPTH+1; parameter LOG_AVG = 6; parameter LOG_AVG_SCALE = LOG_AVG+8; parameter LOG_AVG_SYNC_RATE = LOG_RATE; parameter WR_PERIOD = ((((INPUT_PERIOD_NS << 16) + INPUT_PERIOD_FNS) + 64'd0) << 16) / ((OUTPUT_PERIOD_NS << 16) + OUTPUT_PERIOD_FNS) / 2**(LOG_RATE+1); reg [NS_WIDTH-1:0] period_ns_reg = OUTPUT_PERIOD_NS; reg [FNS_WIDTH-1:0] period_fns_reg = OUTPUT_PERIOD_FNS; reg [47:0] ts_s_reg = 0; reg [TS_NS_WIDTH-1:0] ts_ns_reg = 0; reg [FNS_WIDTH-1:0] ts_fns_reg = 0; reg [TS_NS_WIDTH-1:0] ts_ns_inc_reg = 0; reg [FNS_WIDTH-1:0] ts_fns_inc_reg = 0; reg [TS_NS_WIDTH+1-1:0] ts_ns_ovf_reg = {TS_NS_WIDTH{1'b1}}; reg [FNS_WIDTH-1:0] ts_fns_ovf_reg = {FNS_WIDTH{1'b1}}; reg ts_step_reg = 1'b0; reg pps_reg = 0; reg [FIFO_ADDR_WIDTH:0] wr_ptr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, wr_ptr_next; reg [FIFO_ADDR_WIDTH:0] wr_ptr_gray_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, wr_ptr_gray_next; reg [FIFO_ADDR_WIDTH:0] rd_ptr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, rd_ptr_next; reg [FIFO_ADDR_WIDTH:0] rd_ptr_gray_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, rd_ptr_gray_next; reg [FIFO_ADDR_WIDTH:0] wr_ptr_gray_sync1_reg = {FIFO_ADDR_WIDTH+1{1'b0}}; reg [FIFO_ADDR_WIDTH:0] wr_ptr_gray_sync2_reg = {FIFO_ADDR_WIDTH+1{1'b0}}; wire [FIFO_ADDR_WIDTH:0] wr_ptr_sync2; reg [FIFO_ADDR_WIDTH:0] rd_ptr_gray_sync1_reg = {FIFO_ADDR_WIDTH+1{1'b0}}; reg [FIFO_ADDR_WIDTH:0] rd_ptr_gray_sync2_reg = {FIFO_ADDR_WIDTH+1{1'b0}}; wire [FIFO_ADDR_WIDTH:0] rd_ptr_sync2; reg [FIFO_ADDR_WIDTH:0] wr_ptr_gray_sample_sync1_reg = {FIFO_ADDR_WIDTH+1{1'b0}}; reg [FIFO_ADDR_WIDTH:0] wr_ptr_gray_sample_sync2_reg = {FIFO_ADDR_WIDTH+1{1'b0}}; wire [FIFO_ADDR_WIDTH:0] wr_ptr_sample_sync2; reg [FIFO_ADDR_WIDTH:0] rd_ptr_gray_sample_sync1_reg = {FIFO_ADDR_WIDTH+1{1'b0}}; reg [FIFO_ADDR_WIDTH:0] rd_ptr_gray_sample_sync2_reg = {FIFO_ADDR_WIDTH+1{1'b0}}; wire [FIFO_ADDR_WIDTH:0] rd_ptr_sample_sync2; reg [15:0] wr_acc_reg = 16'd0, wr_acc_next; reg [15:0] wr_inc_reg = WR_PERIOD, wr_inc_next; reg [31:0] err_int_reg = 0, err_int_next; reg [LOG_RATE-1:0] rd_cnt_reg = {LOG_RATE{1'b0}}, rd_cnt_next; reg [LOG_FIFO_DEPTH+LOG_AVG_SCALE+2-1:0] sample_acc_reg = 0; reg [LOG_FIFO_DEPTH+LOG_AVG_SCALE+2-1:0] sample_avg_reg = 0; reg [LOG_AVG_SYNC_RATE-1:0] sample_cnt_reg = 0; reg sample_update_reg = 1'b0; reg sample_update_sync1_reg = 1'b0; reg sample_update_sync2_reg = 1'b0; reg sample_update_sync3_reg = 1'b0; reg [TS_WIDTH-1:0] mem[(2**FIFO_ADDR_WIDTH)-1:0]; reg [TS_WIDTH-1:0] mem_read_data_reg = 0; // full when first TWO MSBs do NOT match, but rest matches // (gray code equivalent of first MSB different but rest same) wire full = ((wr_ptr_gray_reg[FIFO_ADDR_WIDTH] != rd_ptr_gray_sync2_reg[FIFO_ADDR_WIDTH]) && (wr_ptr_gray_reg[FIFO_ADDR_WIDTH-1] != rd_ptr_gray_sync2_reg[FIFO_ADDR_WIDTH-1]) && (wr_ptr_gray_reg[FIFO_ADDR_WIDTH-2:0] == rd_ptr_gray_sync2_reg[FIFO_ADDR_WIDTH-2:0])); // empty when pointers match exactly wire empty = rd_ptr_gray_reg == wr_ptr_gray_sync2_reg; wire [FIFO_ADDR_WIDTH:0] wr_depth = wr_ptr_reg - rd_ptr_sync2; wire [FIFO_ADDR_WIDTH:0] rd_depth = wr_ptr_sync2 - rd_ptr_reg; wire [FIFO_ADDR_WIDTH:0] sample_depth = wr_ptr_sample_sync2 - rd_ptr_sample_sync2; // control signals reg write; reg read; generate if (TS_WIDTH == 96) begin assign output_ts[95:48] = ts_s_reg; assign output_ts[47:46] = 2'b00; assign output_ts[45:16] = ts_ns_reg; assign output_ts[15:0] = FNS_WIDTH > 16 ? ts_fns_reg >> (FNS_WIDTH-16) : ts_fns_reg << (16-FNS_WIDTH); end else if (TS_WIDTH == 64) begin assign output_ts[63:16] = ts_ns_reg; assign output_ts[15:0] = FNS_WIDTH > 16 ? ts_fns_reg >> (FNS_WIDTH-16) : ts_fns_reg << (16-FNS_WIDTH); end endgenerate assign output_ts_step = ts_step_reg; assign output_pps = pps_reg; generate genvar n; for (n = 0; n < FIFO_ADDR_WIDTH+1; n = n + 1) begin assign wr_ptr_sync2[n] = ^wr_ptr_gray_sync2_reg[FIFO_ADDR_WIDTH+1-1:n]; assign rd_ptr_sync2[n] = ^rd_ptr_gray_sync2_reg[FIFO_ADDR_WIDTH+1-1:n]; assign wr_ptr_sample_sync2[n] = ^wr_ptr_gray_sample_sync2_reg[FIFO_ADDR_WIDTH+1-1:n]; assign rd_ptr_sample_sync2[n] = ^rd_ptr_gray_sample_sync2_reg[FIFO_ADDR_WIDTH+1-1:n]; end endgenerate // pointer sync always @(posedge input_clk) begin rd_ptr_gray_sync1_reg <= rd_ptr_gray_reg; rd_ptr_gray_sync2_reg <= rd_ptr_gray_sync1_reg; end always @(posedge output_clk) begin wr_ptr_gray_sync1_reg <= wr_ptr_gray_reg; wr_ptr_gray_sync2_reg <= wr_ptr_gray_sync1_reg; end always @(posedge sample_clk) begin rd_ptr_gray_sample_sync1_reg <= rd_ptr_gray_reg; rd_ptr_gray_sample_sync2_reg <= rd_ptr_gray_sample_sync1_reg; wr_ptr_gray_sample_sync1_reg <= wr_ptr_gray_reg; wr_ptr_gray_sample_sync2_reg <= wr_ptr_gray_sample_sync1_reg; end always @(posedge sample_clk) begin if (USE_SAMPLE_CLOCK) begin sample_acc_reg <= sample_acc_reg + ((sample_depth * 2**LOG_AVG_SCALE - sample_acc_reg) >> LOG_AVG); sample_cnt_reg <= sample_cnt_reg + 1; if (sample_cnt_reg == 0) begin sample_update_reg <= !sample_update_reg; sample_avg_reg <= sample_acc_reg; end end end always @(posedge input_clk) begin sample_update_sync1_reg <= sample_update_reg; sample_update_sync2_reg <= sample_update_sync1_reg; sample_update_sync3_reg <= sample_update_sync2_reg; end reg [LOG_FIFO_DEPTH+LOG_AVG_SCALE+2-1:0] sample_avg_sync_reg = 0; reg sample_avg_sync_valid_reg = 0; always @(posedge input_clk) begin if (USE_SAMPLE_CLOCK) begin sample_avg_sync_valid_reg <= 1'b0; if (sample_update_sync2_reg ^ sample_update_sync3_reg) begin sample_avg_sync_reg <= sample_avg_reg; sample_avg_sync_valid_reg <= 1'b1; end end else begin sample_acc_reg <= sample_acc_reg + ((wr_depth * 2**LOG_AVG_SCALE - sample_acc_reg) >> LOG_AVG); sample_cnt_reg <= sample_cnt_reg + 1; sample_avg_sync_valid_reg <= 1'b0; if (sample_cnt_reg == 0) begin sample_avg_sync_reg <= sample_acc_reg; sample_avg_sync_valid_reg <= 1'b1; end end end always @* begin write = 1'b0; wr_ptr_next = wr_ptr_reg; wr_ptr_gray_next = wr_ptr_gray_reg; wr_acc_next = wr_acc_reg + wr_inc_reg; wr_inc_next = wr_inc_reg; err_int_next = err_int_reg; if (sample_avg_sync_valid_reg) begin // updated sampled FIFO depth err_int_next = err_int_reg + (sample_avg_sync_reg - (2**LOG_FIFO_DEPTH * 2**LOG_AVG_SCALE)); wr_inc_next = WR_PERIOD + (((2**LOG_FIFO_DEPTH * 2**LOG_AVG_SCALE) - sample_avg_sync_reg) >> 8) - ($signed(err_int_reg) >> 13); if ($signed(wr_inc_next) > $signed(WR_PERIOD*4)) begin wr_inc_next = WR_PERIOD*4; end else if ($signed(wr_inc_next) < $signed(WR_PERIOD/4)) begin wr_inc_next = WR_PERIOD/4; end end if (!full && wr_acc_reg[15] != wr_acc_next[15]) begin write = 1'b1; wr_ptr_next = wr_ptr_reg + 1; wr_ptr_gray_next = wr_ptr_next ^ (wr_ptr_next >> 1); end end always @(posedge input_clk) begin wr_ptr_reg <= wr_ptr_next; wr_ptr_gray_reg <= wr_ptr_gray_next; wr_acc_reg <= wr_acc_next; wr_inc_reg <= wr_inc_next; err_int_reg <= err_int_next; if (write) begin mem[wr_ptr_reg[FIFO_ADDR_WIDTH-1:0]] <= input_ts; end if (input_rst) begin wr_ptr_reg <= {FIFO_ADDR_WIDTH+1{1'b0}}; wr_ptr_gray_reg <= {FIFO_ADDR_WIDTH+1{1'b0}}; wr_acc_reg <= 16'd0; wr_inc_reg <= WR_PERIOD; err_int_reg <= 0; end end always @* begin read = 1'b0; rd_ptr_next = rd_ptr_reg; rd_ptr_gray_next = rd_ptr_gray_reg; rd_cnt_next = rd_cnt_reg + 1; if (!empty && rd_cnt_reg == 0) begin read = 1'b1; rd_ptr_next = rd_ptr_reg + 1; rd_ptr_gray_next = rd_ptr_next ^ (rd_ptr_next >> 1); end end always @(posedge output_clk) begin rd_ptr_reg <= rd_ptr_next; rd_ptr_gray_reg <= rd_ptr_gray_next; rd_cnt_reg <= rd_cnt_next; if (!empty) begin mem_read_data_reg <= mem[rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]]; end if (read) begin end if (output_rst) begin rd_ptr_reg <= {FIFO_ADDR_WIDTH+1{1'b0}}; rd_ptr_gray_reg <= {FIFO_ADDR_WIDTH+1{1'b0}}; rd_cnt_reg <= {LOG_RATE{1'b0}}; end end reg sec_mismatch_reg = 1'b0; reg diff_valid_reg = 1'b0; reg diff_offset_valid_reg = 1'b0; reg [TS_NS_WIDTH+1-1:0] ts_ns_diff_reg = 31'd0; reg [FNS_WIDTH-1:0] ts_fns_diff_reg = 16'd0; reg [48:0] time_err_int_reg = 32'd0; always @(posedge output_clk) begin ts_step_reg <= 0; diff_valid_reg <= 1'b0; diff_offset_valid_reg <= 1'b0; // 96 bit timestamp if (TS_WIDTH == 96) begin if (!ts_ns_ovf_reg[30]) begin // if the overflow lookahead did not borrow, one second has elapsed // increment seconds field, pre-compute both normal increment and overflow values {ts_ns_inc_reg, ts_fns_inc_reg} <= {ts_ns_ovf_reg, ts_fns_ovf_reg} + {period_ns_reg, period_fns_reg}; {ts_ns_ovf_reg, ts_fns_ovf_reg} <= {ts_ns_ovf_reg, ts_fns_ovf_reg} + {period_ns_reg, period_fns_reg} - {31'd1_000_000_000, {FNS_WIDTH{1'b0}}}; {ts_ns_reg, ts_fns_reg} <= {ts_ns_ovf_reg, ts_fns_ovf_reg}; ts_s_reg <= ts_s_reg + 1; end else begin // no increment seconds field, pre-compute both normal increment and overflow values {ts_ns_inc_reg, ts_fns_inc_reg} <= {ts_ns_inc_reg, ts_fns_inc_reg} + {period_ns_reg, period_fns_reg}; {ts_ns_ovf_reg, ts_fns_ovf_reg} <= {ts_ns_inc_reg, ts_fns_inc_reg} + {period_ns_reg, period_fns_reg} - {31'd1_000_000_000, {FNS_WIDTH{1'b0}}}; {ts_ns_reg, ts_fns_reg} <= {ts_ns_inc_reg, ts_fns_inc_reg}; ts_s_reg <= ts_s_reg; end end else if (TS_WIDTH == 64) begin {ts_ns_reg, ts_fns_reg} <= {ts_ns_reg, ts_fns_reg} + {period_ns_reg, period_fns_reg}; end // FIFO dequeue if (read) begin // dequeue from FIFO if (TS_WIDTH == 96) begin if (mem_read_data_reg[95:48] != ts_s_reg) begin // seconds field doesn't match if (!sec_mismatch_reg) begin // ignore the first time sec_mismatch_reg <= 1'b1; end else begin // two seconds mismatches in a row; step the clock sec_mismatch_reg <= 1'b0; {ts_ns_inc_reg, ts_fns_inc_reg} <= (FNS_WIDTH > 16 ? mem_read_data_reg[45:0] << (FNS_WIDTH-16) : mem_read_data_reg[45:0] >> (16-FNS_WIDTH)) + {period_ns_reg, period_fns_reg}; {ts_ns_ovf_reg, ts_fns_ovf_reg} <= (FNS_WIDTH > 16 ? mem_read_data_reg[45:0] << (FNS_WIDTH-16) : mem_read_data_reg[45:0] >> (16-FNS_WIDTH)) + {period_ns_reg, period_fns_reg} - {31'd1_000_000_000, {FNS_WIDTH{1'b0}}}; ts_s_reg <= mem_read_data_reg[95:48]; ts_ns_reg <= mem_read_data_reg[45:16]; ts_fns_reg <= FNS_WIDTH > 16 ? mem_read_data_reg[15:0] << (FNS_WIDTH-16) : mem_read_data_reg[15:0] >> (16-FNS_WIDTH); ts_step_reg <= 1; end end else begin // compute difference sec_mismatch_reg <= 1'b0; diff_valid_reg <= 1'b1; {ts_ns_diff_reg, ts_fns_diff_reg} <= {ts_ns_reg, ts_fns_reg} - (FNS_WIDTH > 16 ? mem_read_data_reg[45:0] << (FNS_WIDTH-16) : mem_read_data_reg[45:0] >> (16-FNS_WIDTH)); end end else if (TS_WIDTH == 64) begin if (mem_read_data_reg[63:48] != ts_ns_reg[47:32]) begin // high-order bits don't match if (!sec_mismatch_reg) begin // ignore the first time sec_mismatch_reg <= 1'b1; end else begin // two seconds mismatches in a row; step the clock sec_mismatch_reg <= 1'b0; ts_ns_reg <= mem_read_data_reg[63:16]; ts_fns_reg <= FNS_WIDTH > 16 ? mem_read_data_reg[15:0] << (FNS_WIDTH-16) : mem_read_data_reg[15:0] >> (16-FNS_WIDTH); ts_step_reg <= 1; end end else begin // compute difference sec_mismatch_reg <= 1'b0; diff_valid_reg <= 1'b1; {ts_ns_diff_reg, ts_fns_diff_reg} <= {ts_ns_reg, ts_fns_reg} - (FNS_WIDTH > 16 ? mem_read_data_reg[63:0] << (FNS_WIDTH-16) : mem_read_data_reg[63:0] >> (16-FNS_WIDTH)); end end end else if (diff_valid_reg) begin // offset difference by FIFO delay diff_offset_valid_reg <= 1'b1; diff_valid_reg <= 1'b0; {ts_ns_diff_reg, ts_fns_diff_reg} <= {ts_ns_diff_reg, ts_fns_diff_reg} - ({period_ns_reg, period_fns_reg} * 2**(LOG_RATE + LOG_FIFO_DEPTH)); end else if (diff_offset_valid_reg) begin // PI control diff_offset_valid_reg <= 1'b0; if (($signed({ts_ns_diff_reg, ts_fns_diff_reg}) / 2**10) + ($signed(time_err_int_reg) / 2**16) > 4*2**16) begin // limit positive adjustment time_err_int_reg <= 0; {period_ns_reg, period_fns_reg} <= $signed(OUTPUT_PERIOD_NS*2**16 + OUTPUT_PERIOD_FNS) - ({4'd4, {FNS_WIDTH{1'b0}}}); end else if (($signed({ts_ns_diff_reg, ts_fns_diff_reg}) / 2**10) + ($signed(time_err_int_reg) / 2**16) < -8*2**16) begin // limit negative adjustment time_err_int_reg <= 0; {period_ns_reg, period_fns_reg} <= $signed(OUTPUT_PERIOD_NS*2**16 + OUTPUT_PERIOD_FNS) + ({4'd8, {FNS_WIDTH{1'b0}}}); end else begin time_err_int_reg <= $signed(time_err_int_reg) + $signed({ts_ns_diff_reg, ts_fns_diff_reg}); {period_ns_reg, period_fns_reg} <= $signed(OUTPUT_PERIOD_NS*2**16 + OUTPUT_PERIOD_FNS) - ($signed({ts_ns_diff_reg, ts_fns_diff_reg}) / 2**10) - ($signed(time_err_int_reg) / 2**16); end end if (TS_WIDTH == 96) begin pps_reg <= !ts_ns_ovf_reg[30]; end else if (TS_WIDTH == 64) begin pps_reg <= 1'b0; // not currently implemented for 64 bit timestamp format end if (output_rst) begin period_ns_reg <= OUTPUT_PERIOD_NS; period_fns_reg <= OUTPUT_PERIOD_FNS; ts_s_reg <= 0; ts_ns_reg <= 0; ts_fns_reg <= 0; ts_ns_inc_reg <= 0; ts_fns_inc_reg <= 0; ts_ns_ovf_reg <= {TS_NS_WIDTH{1'b1}}; ts_fns_ovf_reg <= {FNS_WIDTH{1'b1}}; ts_step_reg <= 0; pps_reg <= 0; end end endmodule