#!/usr/bin/env python """ Generates an AXI Stream frame join module with a specific number of input ports """ from __future__ import print_function import argparse import math from jinja2 import Template def main(): parser = argparse.ArgumentParser(description=__doc__.strip()) parser.add_argument('-p', '--ports', type=int, default=4, help="number of ports") parser.add_argument('-n', '--name', type=str, help="module name") parser.add_argument('-o', '--output', type=str, help="output file name") args = parser.parse_args() try: generate(**args.__dict__) except IOError as ex: print(ex) exit(1) def generate(ports=4, name=None, output=None): if name is None: name = "axis_frame_join_{0}".format(ports) if output is None: output = name + ".v" print("Opening file '{0}'...".format(output)) output_file = open(output, 'w') print("Generating {0} port AXI Stream frame joiner {1}...".format(ports, name)) select_width = int(math.ceil(math.log(ports, 2))) t = Template(u"""/* Copyright (c) 2014-2016 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4-Stream {{n}} port frame joiner */ module {{name}} # ( parameter TAG_ENABLE = 1, parameter TAG_WIDTH = 16 ) ( input wire clk, input wire rst, /* * AXI inputs */ {%- for p in ports %} input wire [7:0] input_{{p}}_axis_tdata, input wire input_{{p}}_axis_tvalid, output wire input_{{p}}_axis_tready, input wire input_{{p}}_axis_tlast, input wire input_{{p}}_axis_tuser, {% endfor %} /* * AXI output */ output wire [7:0] output_axis_tdata, output wire output_axis_tvalid, input wire output_axis_tready, output wire output_axis_tlast, output wire output_axis_tuser, /* * Configuration */ input wire [TAG_WIDTH-1:0] tag, /* * Status signals */ output wire busy ); localparam TAG_BYTE_WIDTH = (TAG_WIDTH + 7) / 8; // state register localparam [1:0] STATE_IDLE = 2'd0, STATE_WRITE_TAG = 2'd1, STATE_TRANSFER = 2'd2; reg [1:0] state_reg = STATE_IDLE, state_next; reg [2:0] frame_ptr_reg = 3'd0, frame_ptr_next; reg [{{w-1}}:0] port_sel_reg = {{w}}'d0, port_sel_next; reg busy_reg = 1'b0, busy_next; reg [7:0] input_tdata; reg input_tvalid; reg input_tlast; reg input_tuser; reg output_tuser_reg = 1'b0, output_tuser_next; {% for p in ports %} reg input_{{p}}_axis_tready_reg = 1'b0, input_{{p}}_axis_tready_next; {%- endfor %} // internal datapath reg [7:0] output_axis_tdata_int; reg output_axis_tvalid_int; reg output_axis_tready_int_reg = 1'b0; reg output_axis_tlast_int; reg output_axis_tuser_int; wire output_axis_tready_int_early; {% for p in ports %} assign input_{{p}}_axis_tready = input_{{p}}_axis_tready_reg; {%- endfor %} assign busy = busy_reg; always @* begin // input port mux case (port_sel_reg) {%- for p in ports %} {{w}}'d{{p}}: begin input_tdata = input_{{p}}_axis_tdata; input_tvalid = input_{{p}}_axis_tvalid; input_tlast = input_{{p}}_axis_tlast; input_tuser = input_{{p}}_axis_tuser; end {%- endfor %} endcase end integer offset, i; always @* begin state_next = STATE_IDLE; frame_ptr_next = frame_ptr_reg; port_sel_next = port_sel_reg; {% for p in ports %} input_{{p}}_axis_tready_next = 1'b0; {%- endfor %} output_axis_tdata_int = 8'd0; output_axis_tvalid_int = 1'b0; output_axis_tlast_int = 1'b0; output_axis_tuser_int = 1'b0; output_tuser_next = output_tuser_reg; case (state_reg) STATE_IDLE: begin // idle state - wait for data frame_ptr_next = 3'd0; port_sel_next = {{w}}'d0; output_tuser_next = 1'b0; if (TAG_ENABLE) begin // next cycle if started will send tag, so do not enable input input_0_axis_tready_next = 1'b0; end else begin // next cycle if started will send data, so enable input input_0_axis_tready_next = output_axis_tready_int_early; end if (input_0_axis_tvalid) begin // input 0 valid; start transferring data if (TAG_ENABLE) begin // tag enabled, so transmit it if (output_axis_tready_int_reg) begin // output is ready, so short-circuit first tag byte frame_ptr_next = 3'd1; output_axis_tdata_int = tag[(TAG_BYTE_WIDTH-1)*8 +: 8]; output_axis_tvalid_int = 1'b1; end state_next = STATE_WRITE_TAG; end else begin // tag disabled, so transmit data if (output_axis_tready_int_reg) begin // output is ready, so short-circuit first data byte output_axis_tdata_int = input_0_axis_tdata; output_axis_tvalid_int = 1'b1; end state_next = STATE_TRANSFER; end end else begin state_next = STATE_IDLE; end end STATE_WRITE_TAG: begin // write tag data if (output_axis_tready_int_reg) begin // output ready, so send tag byte state_next = STATE_WRITE_TAG; frame_ptr_next = frame_ptr_reg + 1; output_axis_tvalid_int = 1'b1; offset = 0; if (TAG_ENABLE) begin for (i = TAG_BYTE_WIDTH-1; i >= 0; i = i - 1) begin if (frame_ptr_reg == offset) begin output_axis_tdata_int = tag[i*8 +: 8]; end offset = offset + 1; end end if (frame_ptr_reg == offset-1) begin input_0_axis_tready_next = output_axis_tready_int_early; state_next = STATE_TRANSFER; end end else begin state_next = STATE_WRITE_TAG; end end STATE_TRANSFER: begin // transfer input data // set ready for current input case (port_sel_reg) {%- for p in ports %} {{w}}'d{{p}}: input_{{p}}_axis_tready_next = output_axis_tready_int_early; {%- endfor %} endcase if (input_tvalid & output_axis_tready_int_reg) begin // output ready, transfer byte state_next = STATE_TRANSFER; output_axis_tdata_int = input_tdata; output_axis_tvalid_int = input_tvalid; if (input_tlast) begin // last flag received, switch to next port port_sel_next = port_sel_reg + 1; // save tuser - assert tuser out if ANY tuser asserts received output_tuser_next = output_tuser_next | input_tuser; // disable input {%- for p in ports %} input_{{p}}_axis_tready_next = 1'b0; {%- endfor %} if (port_sel_reg == {{w}}'d{{n-1}}) begin // last port - send tlast and tuser and revert to idle output_axis_tlast_int = 1'b1; output_axis_tuser_int = output_tuser_next; state_next = STATE_IDLE; end else begin // otherwise, disable enable next port case (port_sel_next) {%- for p in ports %} {{w}}'d{{p}}: input_{{p}}_axis_tready_next = output_axis_tready_int_early; {%- endfor %} endcase end end end else begin state_next = STATE_TRANSFER; end end endcase end always @(posedge clk) begin if (rst) begin state_reg <= STATE_IDLE; frame_ptr_reg <= 3'd0; port_sel_reg <= {{w}}'d0; {%- for p in ports %} input_{{p}}_axis_tready_reg <= 1'b0; {%- endfor %} output_tuser_reg <= 1'b0; busy_reg <= 1'b0; end else begin state_reg <= state_next; frame_ptr_reg <= frame_ptr_next; port_sel_reg <= port_sel_next; {% for p in ports %} input_{{p}}_axis_tready_reg <= input_{{p}}_axis_tready_next; {%- endfor %} output_tuser_reg <= output_tuser_next; busy_reg <= state_next != STATE_IDLE; end end // output datapath logic reg [7:0] output_axis_tdata_reg = 8'd0; reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next; reg output_axis_tlast_reg = 1'b0; reg output_axis_tuser_reg = 1'b0; reg [7:0] temp_axis_tdata_reg = 8'd0; reg temp_axis_tvalid_reg = 1'b0, temp_axis_tvalid_next; reg temp_axis_tlast_reg = 1'b0; reg temp_axis_tuser_reg = 1'b0; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_axis_temp_to_output; assign output_axis_tdata = output_axis_tdata_reg; assign output_axis_tvalid = output_axis_tvalid_reg; assign output_axis_tlast = output_axis_tlast_reg; assign output_axis_tuser = output_axis_tuser_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign output_axis_tready_int_early = output_axis_tready | (~temp_axis_tvalid_reg & (~output_axis_tvalid_reg | ~output_axis_tvalid_int)); always @* begin // transfer sink ready state to source output_axis_tvalid_next = output_axis_tvalid_reg; temp_axis_tvalid_next = temp_axis_tvalid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_temp_to_output = 1'b0; if (output_axis_tready_int_reg) begin // input is ready if (output_axis_tready | ~output_axis_tvalid_reg) begin // output is ready or currently not valid, transfer data to output output_axis_tvalid_next = output_axis_tvalid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_axis_tvalid_next = output_axis_tvalid_int; store_axis_int_to_temp = 1'b1; end end else if (output_axis_tready) begin // input is not ready, but output is ready output_axis_tvalid_next = temp_axis_tvalid_reg; temp_axis_tvalid_next = 1'b0; store_axis_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin output_axis_tvalid_reg <= 1'b0; output_axis_tready_int_reg <= 1'b0; temp_axis_tvalid_reg <= 1'b0; end else begin output_axis_tvalid_reg <= output_axis_tvalid_next; output_axis_tready_int_reg <= output_axis_tready_int_early; temp_axis_tvalid_reg <= temp_axis_tvalid_next; end // datapath if (store_axis_int_to_output) begin output_axis_tdata_reg <= output_axis_tdata_int; output_axis_tlast_reg <= output_axis_tlast_int; output_axis_tuser_reg <= output_axis_tuser_int; end else if (store_axis_temp_to_output) begin output_axis_tdata_reg <= temp_axis_tdata_reg; output_axis_tlast_reg <= temp_axis_tlast_reg; output_axis_tuser_reg <= temp_axis_tuser_reg; end if (store_axis_int_to_temp) begin temp_axis_tdata_reg <= output_axis_tdata_int; temp_axis_tlast_reg <= output_axis_tlast_int; temp_axis_tuser_reg <= output_axis_tuser_int; end end endmodule """) output_file.write(t.render( n=ports, w=select_width, name=name, ports=range(ports) )) print("Done") if __name__ == "__main__": main()