/* Copyright (c) 2019 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4-Stream 10GBASE-R frame receiver (10GBASE-R in, AXI out) */ module axis_baser_rx_64 # ( parameter DATA_WIDTH = 64, parameter KEEP_WIDTH = (DATA_WIDTH/8), parameter HDR_WIDTH = 2, parameter PTP_PERIOD_NS = 4'h6, parameter PTP_PERIOD_FNS = 16'h6666, parameter PTP_TS_ENABLE = 0, parameter PTP_TS_WIDTH = 96, parameter USER_WIDTH = (PTP_TS_ENABLE ? PTP_TS_WIDTH : 0) + 1 ) ( input wire clk, input wire rst, /* * 10GBASE-R encoded input */ input wire [DATA_WIDTH-1:0] encoded_rx_data, input wire [HDR_WIDTH-1:0] encoded_rx_hdr, /* * AXI output */ output wire [DATA_WIDTH-1:0] m_axis_tdata, output wire [KEEP_WIDTH-1:0] m_axis_tkeep, output wire m_axis_tvalid, output wire m_axis_tlast, output wire [USER_WIDTH-1:0] m_axis_tuser, /* * PTP */ input wire [PTP_TS_WIDTH-1:0] ptp_ts, /* * Status */ output wire [1:0] start_packet, output wire error_bad_frame, output wire error_bad_fcs, output wire rx_bad_block ); // bus width assertions initial begin if (DATA_WIDTH != 64) begin $error("Error: Interface width must be 64"); $finish; end if (KEEP_WIDTH * 8 != DATA_WIDTH) begin $error("Error: Interface requires byte (8-bit) granularity"); $finish; end if (HDR_WIDTH != 2) begin $error("Error: HDR_WIDTH must be 2"); $finish; end end localparam [7:0] ETH_PRE = 8'h55, ETH_SFD = 8'hD5; localparam [7:0] XGMII_IDLE = 8'h07, XGMII_START = 8'hfb, XGMII_TERM = 8'hfd, XGMII_ERROR = 8'hfe; localparam [6:0] CTRL_IDLE = 7'h00, CTRL_LPI = 7'h06, CTRL_ERROR = 7'h1e, CTRL_RES_0 = 7'h2d, CTRL_RES_1 = 7'h33, CTRL_RES_2 = 7'h4b, CTRL_RES_3 = 7'h55, CTRL_RES_4 = 7'h66, CTRL_RES_5 = 7'h78; localparam [3:0] O_SEQ_OS = 4'h0, O_SIG_OS = 4'hf; localparam [1:0] SYNC_DATA = 2'b10, SYNC_CTRL = 2'b01; localparam [7:0] BLOCK_TYPE_CTRL = 8'h1e, // C7 C6 C5 C4 C3 C2 C1 C0 BT BLOCK_TYPE_OS_4 = 8'h2d, // D7 D6 D5 O4 C3 C2 C1 C0 BT BLOCK_TYPE_START_4 = 8'h33, // D7 D6 D5 C3 C2 C1 C0 BT BLOCK_TYPE_OS_START = 8'h66, // D7 D6 D5 O0 D3 D2 D1 BT BLOCK_TYPE_OS_04 = 8'h55, // D7 D6 D5 O4 O0 D3 D2 D1 BT BLOCK_TYPE_START_0 = 8'h78, // D7 D6 D5 D4 D3 D2 D1 BT BLOCK_TYPE_OS_0 = 8'h4b, // C7 C6 C5 C4 O0 D3 D2 D1 BT BLOCK_TYPE_TERM_0 = 8'h87, // C7 C6 C5 C4 C3 C2 C1 BT BLOCK_TYPE_TERM_1 = 8'h99, // C7 C6 C5 C4 C3 C2 D0 BT BLOCK_TYPE_TERM_2 = 8'haa, // C7 C6 C5 C4 C3 D1 D0 BT BLOCK_TYPE_TERM_3 = 8'hb4, // C7 C6 C5 C4 D2 D1 D0 BT BLOCK_TYPE_TERM_4 = 8'hcc, // C7 C6 C5 D3 D2 D1 D0 BT BLOCK_TYPE_TERM_5 = 8'hd2, // C7 C6 D4 D3 D2 D1 D0 BT BLOCK_TYPE_TERM_6 = 8'he1, // C7 D5 D4 D3 D2 D1 D0 BT BLOCK_TYPE_TERM_7 = 8'hff; // D6 D5 D4 D3 D2 D1 D0 BT localparam [3:0] INPUT_TYPE_IDLE = 4'd0, INPUT_TYPE_ERROR = 4'd1, INPUT_TYPE_START_0 = 4'd2, INPUT_TYPE_START_4 = 4'd3, INPUT_TYPE_DATA = 4'd4, INPUT_TYPE_TERM_0 = 4'd8, INPUT_TYPE_TERM_1 = 4'd9, INPUT_TYPE_TERM_2 = 4'd10, INPUT_TYPE_TERM_3 = 4'd11, INPUT_TYPE_TERM_4 = 4'd12, INPUT_TYPE_TERM_5 = 4'd13, INPUT_TYPE_TERM_6 = 4'd14, INPUT_TYPE_TERM_7 = 4'd15; localparam [1:0] STATE_IDLE = 2'd0, STATE_PAYLOAD = 2'd1, STATE_LAST = 2'd2; reg [1:0] state_reg = STATE_IDLE, state_next; // datapath control signals reg reset_crc; reg update_crc_last; reg lanes_swapped = 1'b0; reg [31:0] swap_data = 32'd0; reg delay_type_valid = 1'b0; reg [3:0] delay_type = INPUT_TYPE_IDLE; reg [DATA_WIDTH-1:0] input_data_d0 = {DATA_WIDTH{1'b0}}; reg [DATA_WIDTH-1:0] input_data_d1 = {DATA_WIDTH{1'b0}}; reg [DATA_WIDTH-1:0] input_data_crc = {DATA_WIDTH{1'b0}}; reg [3:0] input_type_d0 = INPUT_TYPE_IDLE; reg [3:0] input_type_d1 = INPUT_TYPE_IDLE; reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}}, m_axis_tdata_next; reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}, m_axis_tkeep_next; reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next; reg m_axis_tlast_reg = 1'b0, m_axis_tlast_next; reg m_axis_tuser_reg = 1'b0, m_axis_tuser_next; reg [1:0] start_packet_reg = 2'b00; reg error_bad_frame_reg = 1'b0, error_bad_frame_next; reg error_bad_fcs_reg = 1'b0, error_bad_fcs_next; reg rx_bad_block_reg = 1'b0; reg [PTP_TS_WIDTH-1:0] ptp_ts_reg = 0; reg [31:0] crc_state = 32'hFFFFFFFF; reg [31:0] crc_state3 = 32'hFFFFFFFF; wire [31:0] crc_next0; wire [31:0] crc_next1; wire [31:0] crc_next2; wire [31:0] crc_next3; wire [31:0] crc_next7; wire crc_valid0 = crc_next0 == ~32'h2144df1c; wire crc_valid1 = crc_next1 == ~32'h2144df1c; wire crc_valid2 = crc_next2 == ~32'h2144df1c; wire crc_valid3 = crc_next3 == ~32'h2144df1c; wire crc_valid7 = crc_next7 == ~32'h2144df1c; reg crc_valid7_save = 1'b0; assign m_axis_tdata = m_axis_tdata_reg; assign m_axis_tkeep = m_axis_tkeep_reg; assign m_axis_tvalid = m_axis_tvalid_reg; assign m_axis_tlast = m_axis_tlast_reg; assign m_axis_tuser = PTP_TS_ENABLE ? {ptp_ts_reg, m_axis_tuser_reg} : m_axis_tuser_reg; assign start_packet = start_packet_reg; assign error_bad_frame = error_bad_frame_reg; assign error_bad_fcs = error_bad_fcs_reg; assign rx_bad_block = rx_bad_block_reg; lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(8), .STYLE("AUTO") ) eth_crc_8 ( .data_in(input_data_crc[7:0]), .state_in(crc_state3), .data_out(), .state_out(crc_next0) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(16), .STYLE("AUTO") ) eth_crc_16 ( .data_in(input_data_crc[15:0]), .state_in(crc_state3), .data_out(), .state_out(crc_next1) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(24), .STYLE("AUTO") ) eth_crc_24 ( .data_in(input_data_crc[23:0]), .state_in(crc_state3), .data_out(), .state_out(crc_next2) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(32), .STYLE("AUTO") ) eth_crc_32 ( .data_in(input_data_crc[31:0]), .state_in(crc_state3), .data_out(), .state_out(crc_next3) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(64), .STYLE("AUTO") ) eth_crc_64 ( .data_in(input_data_d0[63:0]), .state_in(crc_state), .data_out(), .state_out(crc_next7) ); always @* begin state_next = STATE_IDLE; reset_crc = 1'b0; update_crc_last = 1'b0; m_axis_tdata_next = input_data_d1; m_axis_tkeep_next = 8'd0; m_axis_tvalid_next = 1'b0; m_axis_tlast_next = 1'b0; m_axis_tuser_next = 1'b0; error_bad_frame_next = 1'b0; error_bad_fcs_next = 1'b0; case (state_reg) STATE_IDLE: begin // idle state - wait for packet reset_crc = 1'b1; if (input_type_d1 == INPUT_TYPE_START_0) begin // start condition reset_crc = 1'b0; state_next = STATE_PAYLOAD; end else begin state_next = STATE_IDLE; end end STATE_PAYLOAD: begin // read payload m_axis_tdata_next = input_data_d1; m_axis_tkeep_next = 8'hff; m_axis_tvalid_next = 1'b1; m_axis_tlast_next = 1'b0; m_axis_tuser_next = 1'b0; if (input_type_d0 == INPUT_TYPE_DATA) begin state_next = STATE_PAYLOAD; end else if (input_type_d0[3]) begin // INPUT_TYPE_TERM_* if (input_type_d0 <= INPUT_TYPE_TERM_4) begin // end this cycle reset_crc = 1'b1; case (input_type_d0) INPUT_TYPE_TERM_0: m_axis_tkeep_next = 8'b00001111; INPUT_TYPE_TERM_1: m_axis_tkeep_next = 8'b00011111; INPUT_TYPE_TERM_2: m_axis_tkeep_next = 8'b00111111; INPUT_TYPE_TERM_3: m_axis_tkeep_next = 8'b01111111; INPUT_TYPE_TERM_4: m_axis_tkeep_next = 8'b11111111; endcase m_axis_tlast_next = 1'b1; if ((input_type_d0 == INPUT_TYPE_TERM_0 && crc_valid7_save) || (input_type_d0 == INPUT_TYPE_TERM_1 && crc_valid0) || (input_type_d0 == INPUT_TYPE_TERM_2 && crc_valid1) || (input_type_d0 == INPUT_TYPE_TERM_3 && crc_valid2) || (input_type_d0 == INPUT_TYPE_TERM_4 && crc_valid3)) begin // CRC valid end else begin m_axis_tuser_next = 1'b1; error_bad_frame_next = 1'b1; error_bad_fcs_next = 1'b1; end state_next = STATE_IDLE; end else begin // need extra cycle update_crc_last = 1'b1; state_next = STATE_LAST; end end else begin // control or error characters in packet m_axis_tlast_next = 1'b1; m_axis_tuser_next = 1'b1; error_bad_frame_next = 1'b1; reset_crc = 1'b1; state_next = STATE_IDLE; end end STATE_LAST: begin // last cycle of packet m_axis_tdata_next = input_data_d1; m_axis_tkeep_next = 8'hff; m_axis_tvalid_next = 1'b1; m_axis_tlast_next = 1'b1; m_axis_tuser_next = 1'b0; reset_crc = 1'b1; case (input_type_d1) INPUT_TYPE_TERM_5: m_axis_tkeep_next = 8'b00000001; INPUT_TYPE_TERM_6: m_axis_tkeep_next = 8'b00000011; INPUT_TYPE_TERM_7: m_axis_tkeep_next = 8'b00000111; endcase if ((input_type_d1 == INPUT_TYPE_TERM_5 && crc_valid0) || (input_type_d1 == INPUT_TYPE_TERM_6 && crc_valid1) || (input_type_d1 == INPUT_TYPE_TERM_7 && crc_valid2)) begin // CRC valid end else begin m_axis_tuser_next = 1'b1; error_bad_frame_next = 1'b1; error_bad_fcs_next = 1'b1; end state_next = STATE_IDLE; end endcase end always @(posedge clk) begin if (rst) begin state_reg <= STATE_IDLE; m_axis_tvalid_reg <= 1'b0; start_packet_reg <= 2'b00; error_bad_frame_reg <= 1'b0; error_bad_fcs_reg <= 1'b0; rx_bad_block_reg <= 1'b0; crc_state <= 32'hFFFFFFFF; crc_state3 <= 32'hFFFFFFFF; input_type_d0 <= INPUT_TYPE_IDLE; input_type_d1 <= INPUT_TYPE_IDLE; lanes_swapped <= 1'b0; delay_type_valid <= 1'b0; delay_type <= INPUT_TYPE_IDLE; end else begin state_reg <= state_next; m_axis_tvalid_reg <= m_axis_tvalid_next; start_packet_reg <= 2'b00; error_bad_frame_reg <= error_bad_frame_next; error_bad_fcs_reg <= error_bad_fcs_next; rx_bad_block_reg <= 1'b0; delay_type_valid <= 1'b0; if (encoded_rx_hdr == SYNC_CTRL && encoded_rx_data[7:0] == BLOCK_TYPE_START_0) begin lanes_swapped <= 1'b0; start_packet_reg <= 2'b01; input_type_d0 <= INPUT_TYPE_START_0; end else if (encoded_rx_hdr == SYNC_CTRL && (encoded_rx_data[7:0] == BLOCK_TYPE_START_4 || encoded_rx_data[7:0] == BLOCK_TYPE_OS_START)) begin lanes_swapped <= 1'b1; start_packet_reg <= 2'b10; delay_type_valid <= 1'b1; if (delay_type_valid) begin input_type_d0 <= delay_type; end else begin input_type_d0 <= INPUT_TYPE_IDLE; end end else if (lanes_swapped) begin if (delay_type_valid) begin input_type_d0 <= delay_type; end else if (encoded_rx_hdr == SYNC_DATA) begin input_type_d0 <= INPUT_TYPE_DATA; end else if (encoded_rx_hdr == SYNC_CTRL) begin case (encoded_rx_data[7:0]) BLOCK_TYPE_TERM_0: input_type_d0 <= INPUT_TYPE_TERM_4; BLOCK_TYPE_TERM_1: input_type_d0 <= INPUT_TYPE_TERM_5; BLOCK_TYPE_TERM_2: input_type_d0 <= INPUT_TYPE_TERM_6; BLOCK_TYPE_TERM_3: input_type_d0 <= INPUT_TYPE_TERM_7; BLOCK_TYPE_TERM_4: begin delay_type_valid <= 1'b1; input_type_d0 <= INPUT_TYPE_DATA; end BLOCK_TYPE_TERM_5: begin delay_type_valid <= 1'b1; input_type_d0 <= INPUT_TYPE_DATA; end BLOCK_TYPE_TERM_6: begin delay_type_valid <= 1'b1; input_type_d0 <= INPUT_TYPE_DATA; end BLOCK_TYPE_TERM_7: begin delay_type_valid <= 1'b1; input_type_d0 <= INPUT_TYPE_DATA; end default: begin rx_bad_block_reg <= 1'b1; input_type_d0 <= INPUT_TYPE_ERROR; end endcase end else begin rx_bad_block_reg <= 1'b1; input_type_d0 <= INPUT_TYPE_ERROR; end end else begin if (encoded_rx_hdr == SYNC_DATA) begin input_type_d0 <= INPUT_TYPE_DATA; end else if (encoded_rx_hdr == SYNC_CTRL) begin case (encoded_rx_data[7:0]) BLOCK_TYPE_TERM_0: input_type_d0 <= INPUT_TYPE_TERM_0; BLOCK_TYPE_TERM_1: input_type_d0 <= INPUT_TYPE_TERM_1; BLOCK_TYPE_TERM_2: input_type_d0 <= INPUT_TYPE_TERM_2; BLOCK_TYPE_TERM_3: input_type_d0 <= INPUT_TYPE_TERM_3; BLOCK_TYPE_TERM_4: input_type_d0 <= INPUT_TYPE_TERM_4; BLOCK_TYPE_TERM_5: input_type_d0 <= INPUT_TYPE_TERM_5; BLOCK_TYPE_TERM_6: input_type_d0 <= INPUT_TYPE_TERM_6; BLOCK_TYPE_TERM_7: input_type_d0 <= INPUT_TYPE_TERM_7; default: begin rx_bad_block_reg <= 1'b1; input_type_d0 <= INPUT_TYPE_ERROR; end endcase end else begin rx_bad_block_reg <= 1'b1; input_type_d0 <= INPUT_TYPE_ERROR; end end input_type_d1 <= input_type_d0; // datapath if (reset_crc) begin crc_state <= 32'hFFFFFFFF; end else begin crc_state <= crc_next7; end if (update_crc_last) begin crc_state3 <= crc_next3; end else begin crc_state3 <= crc_next7; end end if (PTP_TS_WIDTH == 96 && $signed({1'b0, ptp_ts_reg[45:16]}) - $signed(31'd1000000000) > 0) begin // ns field rollover ptp_ts_reg[45:16] <= $signed({1'b0, ptp_ts_reg[45:16]}) - $signed(31'd1000000000); ptp_ts_reg[95:48] <= ptp_ts_reg[95:48] + 1; end if (encoded_rx_hdr == SYNC_CTRL && encoded_rx_data[7:0] == BLOCK_TYPE_START_0) begin if (PTP_TS_WIDTH == 96) begin ptp_ts_reg[45:0] <= ptp_ts[45:0] + (PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS); ptp_ts_reg[95:48] <= ptp_ts[95:48]; end else begin ptp_ts_reg <= ptp_ts + (PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS); end end else if (encoded_rx_hdr == SYNC_CTRL && (encoded_rx_data[7:0] == BLOCK_TYPE_START_4 || encoded_rx_data[7:0] == BLOCK_TYPE_OS_START)) begin if (PTP_TS_WIDTH == 96) begin ptp_ts_reg[45:0] <= ptp_ts[45:0] + (((PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS) * 3) >> 1); ptp_ts_reg[95:48] <= ptp_ts[95:48]; end else begin ptp_ts_reg <= ptp_ts + (((PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS) * 3) >> 1); end end m_axis_tdata_reg <= m_axis_tdata_next; m_axis_tkeep_reg <= m_axis_tkeep_next; m_axis_tlast_reg <= m_axis_tlast_next; m_axis_tuser_reg <= m_axis_tuser_next; if (encoded_rx_hdr == SYNC_DATA) begin swap_data <= encoded_rx_data[63:32]; end else begin swap_data <= {8'd0, encoded_rx_data[63:40]}; end if (encoded_rx_hdr == SYNC_CTRL && encoded_rx_data[7:0] == BLOCK_TYPE_START_0) begin input_data_d0 <= encoded_rx_data; input_data_crc <= encoded_rx_data; end else if (encoded_rx_hdr == SYNC_CTRL && (encoded_rx_data[7:0] == BLOCK_TYPE_START_4 || encoded_rx_data[7:0] == BLOCK_TYPE_OS_START)) begin input_data_d0 <= {encoded_rx_data[31:0], swap_data}; input_data_crc <= {encoded_rx_data[31:0], swap_data}; end else if (lanes_swapped) begin if (encoded_rx_hdr == SYNC_DATA) begin input_data_d0 <= {encoded_rx_data[31:0], swap_data}; input_data_crc <= {encoded_rx_data[31:0], swap_data}; end else begin input_data_d0 <= {encoded_rx_data[39:8], swap_data}; input_data_crc <= {encoded_rx_data[39:8], swap_data}; end end else begin if (encoded_rx_hdr == SYNC_DATA) begin input_data_d0 <= encoded_rx_data; input_data_crc <= encoded_rx_data; end else begin input_data_d0 <= {8'd0, encoded_rx_data[63:8]}; input_data_crc <= {8'd0, encoded_rx_data[63:8]}; end end crc_valid7_save <= crc_valid7; if (state_next == STATE_LAST) begin input_data_crc[31:0] <= input_data_crc[63:32]; end input_data_d1 <= input_data_d0; if (encoded_rx_hdr == SYNC_DATA) begin delay_type <= INPUT_TYPE_DATA; end else if (encoded_rx_hdr == SYNC_CTRL) begin case (encoded_rx_data[7:0]) BLOCK_TYPE_START_4: delay_type <= INPUT_TYPE_START_0; BLOCK_TYPE_TERM_0: delay_type <= INPUT_TYPE_TERM_4; BLOCK_TYPE_TERM_1: delay_type <= INPUT_TYPE_TERM_5; BLOCK_TYPE_TERM_2: delay_type <= INPUT_TYPE_TERM_6; BLOCK_TYPE_TERM_3: delay_type <= INPUT_TYPE_TERM_7; BLOCK_TYPE_TERM_4: delay_type <= INPUT_TYPE_TERM_0; BLOCK_TYPE_TERM_5: delay_type <= INPUT_TYPE_TERM_1; BLOCK_TYPE_TERM_6: delay_type <= INPUT_TYPE_TERM_2; BLOCK_TYPE_TERM_7: delay_type <= INPUT_TYPE_TERM_3; default: delay_type <= INPUT_TYPE_ERROR; endcase end else begin delay_type <= INPUT_TYPE_ERROR; end end endmodule