/* Copyright (c) 2021 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4 lite crossbar (read) */ module axil_crossbar_rd # ( // Number of AXI inputs (slave interfaces) parameter S_COUNT = 4, // Number of AXI outputs (master interfaces) parameter M_COUNT = 4, // Width of data bus in bits parameter DATA_WIDTH = 32, // Width of address bus in bits parameter ADDR_WIDTH = 32, // Width of wstrb (width of data bus in words) parameter STRB_WIDTH = (DATA_WIDTH/8), // Number of concurrent operations for each slave interface // S_COUNT concatenated fields of 32 bits parameter S_ACCEPT = {S_COUNT{32'd16}}, // Number of regions per master interface parameter M_REGIONS = 1, // Master interface base addresses // M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_WIDTH bits // set to zero for default addressing based on M_ADDR_WIDTH parameter M_BASE_ADDR = 0, // Master interface address widths // M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits parameter M_ADDR_WIDTH = {M_COUNT{{M_REGIONS{32'd24}}}}, // Read connections between interfaces // M_COUNT concatenated fields of S_COUNT bits parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}}, // Number of concurrent operations for each master interface // M_COUNT concatenated fields of 32 bits parameter M_ISSUE = {M_COUNT{32'd16}}, // Secure master (fail operations based on awprot/arprot) // M_COUNT bits parameter M_SECURE = {M_COUNT{1'b0}}, // Slave interface AR channel register type (input) // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter S_AR_REG_TYPE = {S_COUNT{2'd0}}, // Slave interface R channel register type (output) // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter S_R_REG_TYPE = {S_COUNT{2'd2}}, // Master interface AR channel register type (output) // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter M_AR_REG_TYPE = {M_COUNT{2'd1}}, // Master interface R channel register type (input) // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter M_R_REG_TYPE = {M_COUNT{2'd0}} ) ( input wire clk, input wire rst, /* * AXI lite slave interfaces */ input wire [S_COUNT*ADDR_WIDTH-1:0] s_axil_araddr, input wire [S_COUNT*3-1:0] s_axil_arprot, input wire [S_COUNT-1:0] s_axil_arvalid, output wire [S_COUNT-1:0] s_axil_arready, output wire [S_COUNT*DATA_WIDTH-1:0] s_axil_rdata, output wire [S_COUNT*2-1:0] s_axil_rresp, output wire [S_COUNT-1:0] s_axil_rvalid, input wire [S_COUNT-1:0] s_axil_rready, /* * AXI lite master interfaces */ output wire [M_COUNT*ADDR_WIDTH-1:0] m_axil_araddr, output wire [M_COUNT*3-1:0] m_axil_arprot, output wire [M_COUNT-1:0] m_axil_arvalid, input wire [M_COUNT-1:0] m_axil_arready, input wire [M_COUNT*DATA_WIDTH-1:0] m_axil_rdata, input wire [M_COUNT*2-1:0] m_axil_rresp, input wire [M_COUNT-1:0] m_axil_rvalid, output wire [M_COUNT-1:0] m_axil_rready ); parameter CL_S_COUNT = $clog2(S_COUNT); parameter CL_M_COUNT = $clog2(M_COUNT); parameter M_COUNT_P1 = M_COUNT+1; parameter CL_M_COUNT_P1 = $clog2(M_COUNT_P1); integer i; // check configuration initial begin for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin if (M_ADDR_WIDTH[i*32 +: 32] && (M_ADDR_WIDTH[i*32 +: 32] < $clog2(STRB_WIDTH) || M_ADDR_WIDTH[i*32 +: 32] > ADDR_WIDTH)) begin $error("Error: value out of range (instance %m)"); $finish; end end end wire [S_COUNT*ADDR_WIDTH-1:0] int_s_axil_araddr; wire [S_COUNT*3-1:0] int_s_axil_arprot; wire [S_COUNT-1:0] int_s_axil_arvalid; wire [S_COUNT-1:0] int_s_axil_arready; wire [S_COUNT*M_COUNT-1:0] int_axil_arvalid; wire [M_COUNT*S_COUNT-1:0] int_axil_arready; wire [M_COUNT*DATA_WIDTH-1:0] int_m_axil_rdata; wire [M_COUNT*2-1:0] int_m_axil_rresp; wire [M_COUNT-1:0] int_m_axil_rvalid; wire [M_COUNT-1:0] int_m_axil_rready; wire [M_COUNT*S_COUNT-1:0] int_axil_rvalid; wire [S_COUNT*M_COUNT-1:0] int_axil_rready; generate genvar m, n; for (m = 0; m < S_COUNT; m = m + 1) begin : s_ifaces // response routing FIFO localparam FIFO_ADDR_WIDTH = $clog2(S_ACCEPT[m*32 +: 32])+1; reg [FIFO_ADDR_WIDTH+1-1:0] fifo_wr_ptr_reg = 0; reg [FIFO_ADDR_WIDTH+1-1:0] fifo_rd_ptr_reg = 0; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) reg [CL_M_COUNT-1:0] fifo_select[(2**FIFO_ADDR_WIDTH)-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) reg fifo_decerr[(2**FIFO_ADDR_WIDTH)-1:0]; wire [CL_M_COUNT-1:0] fifo_wr_select; wire fifo_wr_decerr; wire fifo_wr_en; reg [CL_M_COUNT-1:0] fifo_rd_select_reg = 0; reg fifo_rd_decerr_reg = 0; reg fifo_rd_valid_reg = 0; wire fifo_rd_en; reg fifo_half_full_reg = 1'b0; wire fifo_empty = fifo_rd_ptr_reg == fifo_wr_ptr_reg; integer i; initial begin for (i = 0; i < 2**FIFO_ADDR_WIDTH; i = i + 1) begin fifo_select[i] = 0; fifo_decerr[i] = 0; end end always @(posedge clk) begin if (fifo_wr_en) begin fifo_select[fifo_wr_ptr_reg[FIFO_ADDR_WIDTH-1:0]] <= fifo_wr_select; fifo_decerr[fifo_wr_ptr_reg[FIFO_ADDR_WIDTH-1:0]] <= fifo_wr_decerr; fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1; end fifo_rd_valid_reg <= fifo_rd_valid_reg && !fifo_rd_en; if ((fifo_rd_ptr_reg != fifo_wr_ptr_reg) && (!fifo_rd_valid_reg || fifo_rd_en)) begin fifo_rd_select_reg <= fifo_select[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]]; fifo_rd_decerr_reg <= fifo_decerr[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]]; fifo_rd_valid_reg <= 1'b1; fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1; end fifo_half_full_reg <= $unsigned(fifo_wr_ptr_reg - fifo_rd_ptr_reg) >= 2**(FIFO_ADDR_WIDTH-1); if (rst) begin fifo_wr_ptr_reg <= 0; fifo_rd_ptr_reg <= 0; fifo_rd_valid_reg <= 1'b0; end end // address decode and admission control wire [CL_M_COUNT-1:0] a_select; wire m_axil_avalid; wire m_axil_aready; wire [CL_M_COUNT-1:0] m_rc_select; wire m_rc_decerr; wire m_rc_valid; wire m_rc_ready; axil_crossbar_addr #( .S(m), .S_COUNT(S_COUNT), .M_COUNT(M_COUNT), .ADDR_WIDTH(ADDR_WIDTH), .M_REGIONS(M_REGIONS), .M_BASE_ADDR(M_BASE_ADDR), .M_ADDR_WIDTH(M_ADDR_WIDTH), .M_CONNECT(M_CONNECT), .M_SECURE(M_SECURE), .WC_OUTPUT(0) ) addr_inst ( .clk(clk), .rst(rst), /* * Address input */ .s_axil_aaddr(int_s_axil_araddr[m*ADDR_WIDTH +: ADDR_WIDTH]), .s_axil_aprot(int_s_axil_arprot[m*3 +: 3]), .s_axil_avalid(int_s_axil_arvalid[m]), .s_axil_aready(int_s_axil_arready[m]), /* * Address output */ .m_select(a_select), .m_axil_avalid(m_axil_avalid), .m_axil_aready(m_axil_aready), /* * Write command output */ .m_wc_select(), .m_wc_decerr(), .m_wc_valid(), .m_wc_ready(1'b1), /* * Response command output */ .m_rc_select(m_rc_select), .m_rc_decerr(m_rc_decerr), .m_rc_valid(m_rc_valid), .m_rc_ready(m_rc_ready) ); assign int_axil_arvalid[m*M_COUNT +: M_COUNT] = m_axil_avalid << a_select; assign m_axil_aready = int_axil_arready[a_select*S_COUNT+m]; // response handling assign fifo_wr_select = m_rc_select; assign fifo_wr_decerr = m_rc_decerr; assign fifo_wr_en = m_rc_valid && !fifo_half_full_reg; assign m_rc_ready = !fifo_half_full_reg; // write response handling wire [CL_M_COUNT-1:0] r_select = M_COUNT > 1 ? fifo_rd_select_reg : 0; wire r_decerr = fifo_rd_decerr_reg; wire r_valid = fifo_rd_valid_reg; // read response mux wire [DATA_WIDTH-1:0] m_axil_rdata_mux = r_decerr ? {DATA_WIDTH{1'b0}} : int_m_axil_rdata[r_select*DATA_WIDTH +: DATA_WIDTH]; wire [1:0] m_axil_rresp_mux = r_decerr ? 2'b11 : int_m_axil_rresp[r_select*2 +: 2]; wire m_axil_rvalid_mux = (r_decerr ? 1'b1 : int_axil_rvalid[r_select*S_COUNT+m]) && r_valid; wire m_axil_rready_mux; assign int_axil_rready[m*M_COUNT +: M_COUNT] = (r_valid && m_axil_rready_mux) << r_select; assign fifo_rd_en = m_axil_rvalid_mux && m_axil_rready_mux && r_valid; // S side register axil_register_rd #( .DATA_WIDTH(DATA_WIDTH), .ADDR_WIDTH(ADDR_WIDTH), .STRB_WIDTH(STRB_WIDTH), .AR_REG_TYPE(S_AR_REG_TYPE[m*2 +: 2]), .R_REG_TYPE(S_R_REG_TYPE[m*2 +: 2]) ) reg_inst ( .clk(clk), .rst(rst), .s_axil_araddr(s_axil_araddr[m*ADDR_WIDTH +: ADDR_WIDTH]), .s_axil_arprot(s_axil_arprot[m*3 +: 3]), .s_axil_arvalid(s_axil_arvalid[m]), .s_axil_arready(s_axil_arready[m]), .s_axil_rdata(s_axil_rdata[m*DATA_WIDTH +: DATA_WIDTH]), .s_axil_rresp(s_axil_rresp[m*2 +: 2]), .s_axil_rvalid(s_axil_rvalid[m]), .s_axil_rready(s_axil_rready[m]), .m_axil_araddr(int_s_axil_araddr[m*ADDR_WIDTH +: ADDR_WIDTH]), .m_axil_arprot(int_s_axil_arprot[m*3 +: 3]), .m_axil_arvalid(int_s_axil_arvalid[m]), .m_axil_arready(int_s_axil_arready[m]), .m_axil_rdata(m_axil_rdata_mux), .m_axil_rresp(m_axil_rresp_mux), .m_axil_rvalid(m_axil_rvalid_mux), .m_axil_rready(m_axil_rready_mux) ); end // s_ifaces for (n = 0; n < M_COUNT; n = n + 1) begin : m_ifaces // response routing FIFO localparam FIFO_ADDR_WIDTH = $clog2(M_ISSUE[n*32 +: 32])+1; reg [FIFO_ADDR_WIDTH+1-1:0] fifo_wr_ptr_reg = 0; reg [FIFO_ADDR_WIDTH+1-1:0] fifo_rd_ptr_reg = 0; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) reg [CL_S_COUNT-1:0] fifo_select[(2**FIFO_ADDR_WIDTH)-1:0]; wire [CL_S_COUNT-1:0] fifo_wr_select; wire fifo_wr_en; wire fifo_rd_en; reg fifo_half_full_reg = 1'b0; wire fifo_empty = fifo_rd_ptr_reg == fifo_wr_ptr_reg; integer i; initial begin for (i = 0; i < 2**FIFO_ADDR_WIDTH; i = i + 1) begin fifo_select[i] = 0; end end always @(posedge clk) begin if (fifo_wr_en) begin fifo_select[fifo_wr_ptr_reg[FIFO_ADDR_WIDTH-1:0]] <= fifo_wr_select; fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1; end if (fifo_rd_en) begin fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1; end fifo_half_full_reg <= $unsigned(fifo_wr_ptr_reg - fifo_rd_ptr_reg) >= 2**(FIFO_ADDR_WIDTH-1); if (rst) begin fifo_wr_ptr_reg <= 0; fifo_rd_ptr_reg <= 0; end end // address arbitration wire [S_COUNT-1:0] a_request; wire [S_COUNT-1:0] a_acknowledge; wire [S_COUNT-1:0] a_grant; wire a_grant_valid; wire [CL_S_COUNT-1:0] a_grant_encoded; arbiter #( .PORTS(S_COUNT), .ARB_TYPE_ROUND_ROBIN(1), .ARB_BLOCK(1), .ARB_BLOCK_ACK(1), .ARB_LSB_HIGH_PRIORITY(1) ) a_arb_inst ( .clk(clk), .rst(rst), .request(a_request), .acknowledge(a_acknowledge), .grant(a_grant), .grant_valid(a_grant_valid), .grant_encoded(a_grant_encoded) ); // address mux wire [ADDR_WIDTH-1:0] s_axil_araddr_mux = int_s_axil_araddr[a_grant_encoded*ADDR_WIDTH +: ADDR_WIDTH]; wire [2:0] s_axil_arprot_mux = int_s_axil_arprot[a_grant_encoded*3 +: 3]; wire s_axil_arvalid_mux = int_axil_arvalid[a_grant_encoded*M_COUNT+n] && a_grant_valid; wire s_axil_arready_mux; assign int_axil_arready[n*S_COUNT +: S_COUNT] = (a_grant_valid && s_axil_arready_mux) << a_grant_encoded; for (m = 0; m < S_COUNT; m = m + 1) begin assign a_request[m] = int_axil_arvalid[m*M_COUNT+n] && !a_grant[m] && !fifo_half_full_reg; assign a_acknowledge[m] = a_grant[m] && int_axil_arvalid[m*M_COUNT+n] && s_axil_arready_mux; end assign fifo_wr_select = a_grant_encoded; assign fifo_wr_en = s_axil_arvalid_mux && s_axil_arready_mux && a_grant_valid; // read response forwarding wire [CL_S_COUNT-1:0] r_select = S_COUNT > 1 ? fifo_select[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]] : 0; assign int_axil_rvalid[n*S_COUNT +: S_COUNT] = int_m_axil_rvalid[n] << r_select; assign int_m_axil_rready[n] = int_axil_rready[r_select*M_COUNT+n]; assign fifo_rd_en = int_m_axil_rvalid[n] && int_m_axil_rready[n]; // M side register axil_register_rd #( .DATA_WIDTH(DATA_WIDTH), .ADDR_WIDTH(ADDR_WIDTH), .STRB_WIDTH(STRB_WIDTH), .AR_REG_TYPE(M_AR_REG_TYPE[n*2 +: 2]), .R_REG_TYPE(M_R_REG_TYPE[n*2 +: 2]) ) reg_inst ( .clk(clk), .rst(rst), .s_axil_araddr(s_axil_araddr_mux), .s_axil_arprot(s_axil_arprot_mux), .s_axil_arvalid(s_axil_arvalid_mux), .s_axil_arready(s_axil_arready_mux), .s_axil_rdata(int_m_axil_rdata[n*DATA_WIDTH +: DATA_WIDTH]), .s_axil_rresp(int_m_axil_rresp[n*2 +: 2]), .s_axil_rvalid(int_m_axil_rvalid[n]), .s_axil_rready(int_m_axil_rready[n]), .m_axil_araddr(m_axil_araddr[n*ADDR_WIDTH +: ADDR_WIDTH]), .m_axil_arprot(m_axil_arprot[n*3 +: 3]), .m_axil_arvalid(m_axil_arvalid[n]), .m_axil_arready(m_axil_arready[n]), .m_axil_rdata(m_axil_rdata[n*DATA_WIDTH +: DATA_WIDTH]), .m_axil_rresp(m_axil_rresp[n*2 +: 2]), .m_axil_rvalid(m_axil_rvalid[n]), .m_axil_rready(m_axil_rready[n]) ); end // m_ifaces endgenerate endmodule `resetall