/* Copyright (c) 2014-2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4-Stream asynchronous FIFO */ module axis_async_fifo # ( parameter ADDR_WIDTH = 12, parameter DATA_WIDTH = 8, parameter KEEP_ENABLE = (DATA_WIDTH>8), parameter KEEP_WIDTH = (DATA_WIDTH/8), parameter LAST_ENABLE = 1, parameter ID_ENABLE = 0, parameter ID_WIDTH = 8, parameter DEST_ENABLE = 0, parameter DEST_WIDTH = 8, parameter USER_ENABLE = 1, parameter USER_WIDTH = 1, parameter FRAME_FIFO = 0, parameter USER_BAD_FRAME_VALUE = 1'b1, parameter USER_BAD_FRAME_MASK = 1'b1, parameter DROP_BAD_FRAME = 0, parameter DROP_WHEN_FULL = 0 ) ( /* * Common asynchronous reset */ input wire async_rst, /* * AXI input */ input wire s_clk, input wire [DATA_WIDTH-1:0] s_axis_tdata, input wire [KEEP_WIDTH-1:0] s_axis_tkeep, input wire s_axis_tvalid, output wire s_axis_tready, input wire s_axis_tlast, input wire [ID_WIDTH-1:0] s_axis_tid, input wire [DEST_WIDTH-1:0] s_axis_tdest, input wire [USER_WIDTH-1:0] s_axis_tuser, /* * AXI output */ input wire m_clk, output wire [DATA_WIDTH-1:0] m_axis_tdata, output wire [KEEP_WIDTH-1:0] m_axis_tkeep, output wire m_axis_tvalid, input wire m_axis_tready, output wire m_axis_tlast, output wire [ID_WIDTH-1:0] m_axis_tid, output wire [DEST_WIDTH-1:0] m_axis_tdest, output wire [USER_WIDTH-1:0] m_axis_tuser, /* * Status */ output wire s_status_overflow, output wire s_status_bad_frame, output wire s_status_good_frame, output wire m_status_overflow, output wire m_status_bad_frame, output wire m_status_good_frame ); // check configuration initial begin if (FRAME_FIFO && !LAST_ENABLE) begin $error("Error: FRAME_FIFO set requires LAST_ENABLE set"); $finish; end if (DROP_BAD_FRAME && !FRAME_FIFO) begin $error("Error: DROP_BAD_FRAME set requires FRAME_FIFO set"); $finish; end if (DROP_WHEN_FULL && !FRAME_FIFO) begin $error("Error: DROP_WHEN_FULL set requires FRAME_FIFO set"); $finish; end if (DROP_BAD_FRAME && (USER_BAD_FRAME_MASK & {USER_WIDTH{1'b1}}) == 0) begin $error("Error: Invalid USER_BAD_FRAME_MASK value"); $finish; end end localparam KEEP_OFFSET = DATA_WIDTH; localparam LAST_OFFSET = KEEP_OFFSET + (KEEP_ENABLE ? KEEP_WIDTH : 0); localparam ID_OFFSET = LAST_OFFSET + (LAST_ENABLE ? 1 : 0); localparam DEST_OFFSET = ID_OFFSET + (ID_ENABLE ? ID_WIDTH : 0); localparam USER_OFFSET = DEST_OFFSET + (DEST_ENABLE ? DEST_WIDTH : 0); localparam WIDTH = USER_OFFSET + (USER_ENABLE ? USER_WIDTH : 0); reg [ADDR_WIDTH:0] wr_ptr_reg = {ADDR_WIDTH+1{1'b0}}, wr_ptr_next; reg [ADDR_WIDTH:0] wr_ptr_cur_reg = {ADDR_WIDTH+1{1'b0}}, wr_ptr_cur_next; reg [ADDR_WIDTH:0] wr_ptr_gray_reg = {ADDR_WIDTH+1{1'b0}}, wr_ptr_gray_next; reg [ADDR_WIDTH:0] wr_ptr_sync_gray_reg = {ADDR_WIDTH+1{1'b0}}, wr_ptr_sync_gray_next; reg [ADDR_WIDTH:0] wr_ptr_cur_gray_reg = {ADDR_WIDTH+1{1'b0}}, wr_ptr_cur_gray_next; reg [ADDR_WIDTH:0] wr_addr_reg = {ADDR_WIDTH+1{1'b0}}; reg [ADDR_WIDTH:0] rd_ptr_reg = {ADDR_WIDTH+1{1'b0}}, rd_ptr_next; reg [ADDR_WIDTH:0] rd_ptr_gray_reg = {ADDR_WIDTH+1{1'b0}}, rd_ptr_gray_next; reg [ADDR_WIDTH:0] rd_addr_reg = {ADDR_WIDTH+1{1'b0}}; reg [ADDR_WIDTH:0] wr_ptr_gray_sync1_reg = {ADDR_WIDTH+1{1'b0}}; reg [ADDR_WIDTH:0] wr_ptr_gray_sync2_reg = {ADDR_WIDTH+1{1'b0}}; reg [ADDR_WIDTH:0] rd_ptr_gray_sync1_reg = {ADDR_WIDTH+1{1'b0}}; reg [ADDR_WIDTH:0] rd_ptr_gray_sync2_reg = {ADDR_WIDTH+1{1'b0}}; reg wr_ptr_update_valid_reg = 1'b0, wr_ptr_update_valid_next; reg wr_ptr_update_reg = 1'b0, wr_ptr_update_next; reg wr_ptr_update_sync1_reg = 1'b0; reg wr_ptr_update_sync2_reg = 1'b0; reg wr_ptr_update_sync3_reg = 1'b0; reg wr_ptr_update_ack_sync1_reg = 1'b0; reg wr_ptr_update_ack_sync2_reg = 1'b0; reg s_rst_sync1_reg = 1'b1; reg s_rst_sync2_reg = 1'b1; reg s_rst_sync3_reg = 1'b1; reg m_rst_sync1_reg = 1'b1; reg m_rst_sync2_reg = 1'b1; reg m_rst_sync3_reg = 1'b1; reg [WIDTH-1:0] mem[(2**ADDR_WIDTH)-1:0]; reg [WIDTH-1:0] mem_read_data_reg; reg mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next; wire [WIDTH-1:0] s_axis; reg [WIDTH-1:0] m_axis_reg; reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next; // full when first TWO MSBs do NOT match, but rest matches // (gray code equivalent of first MSB different but rest same) wire full = ((wr_ptr_gray_reg[ADDR_WIDTH] != rd_ptr_gray_sync2_reg[ADDR_WIDTH]) && (wr_ptr_gray_reg[ADDR_WIDTH-1] != rd_ptr_gray_sync2_reg[ADDR_WIDTH-1]) && (wr_ptr_gray_reg[ADDR_WIDTH-2:0] == rd_ptr_gray_sync2_reg[ADDR_WIDTH-2:0])); wire full_cur = ((wr_ptr_cur_gray_reg[ADDR_WIDTH] != rd_ptr_gray_sync2_reg[ADDR_WIDTH]) && (wr_ptr_cur_gray_reg[ADDR_WIDTH-1] != rd_ptr_gray_sync2_reg[ADDR_WIDTH-1]) && (wr_ptr_cur_gray_reg[ADDR_WIDTH-2:0] == rd_ptr_gray_sync2_reg[ADDR_WIDTH-2:0])); // empty when pointers match exactly wire empty = rd_ptr_gray_reg == (FRAME_FIFO ? wr_ptr_gray_sync1_reg : wr_ptr_gray_sync2_reg); // overflow within packet wire full_wr = ((wr_ptr_reg[ADDR_WIDTH] != wr_ptr_cur_reg[ADDR_WIDTH]) && (wr_ptr_reg[ADDR_WIDTH-1:0] == wr_ptr_cur_reg[ADDR_WIDTH-1:0])); // control signals reg write; reg read; reg store_output; reg drop_frame_reg = 1'b0, drop_frame_next; reg overflow_reg = 1'b0, overflow_next; reg bad_frame_reg = 1'b0, bad_frame_next; reg good_frame_reg = 1'b0, good_frame_next; reg overflow_sync1_reg = 1'b0; reg overflow_sync2_reg = 1'b0; reg overflow_sync3_reg = 1'b0; reg overflow_sync4_reg = 1'b0; reg bad_frame_sync1_reg = 1'b0; reg bad_frame_sync2_reg = 1'b0; reg bad_frame_sync3_reg = 1'b0; reg bad_frame_sync4_reg = 1'b0; reg good_frame_sync1_reg = 1'b0; reg good_frame_sync2_reg = 1'b0; reg good_frame_sync3_reg = 1'b0; reg good_frame_sync4_reg = 1'b0; assign s_axis_tready = (FRAME_FIFO ? (!full_cur || full_wr || DROP_WHEN_FULL) : !full) && !s_rst_sync3_reg; generate assign s_axis[DATA_WIDTH-1:0] = s_axis_tdata; if (KEEP_ENABLE) assign s_axis[KEEP_OFFSET +: KEEP_WIDTH] = s_axis_tkeep; if (LAST_ENABLE) assign s_axis[LAST_OFFSET] = s_axis_tlast; if (ID_ENABLE) assign s_axis[ID_OFFSET +: ID_WIDTH] = s_axis_tid; if (DEST_ENABLE) assign s_axis[DEST_OFFSET +: DEST_WIDTH] = s_axis_tdest; if (USER_ENABLE) assign s_axis[USER_OFFSET +: USER_WIDTH] = s_axis_tuser; endgenerate assign m_axis_tvalid = m_axis_tvalid_reg; assign m_axis_tdata = m_axis_reg[DATA_WIDTH-1:0]; assign m_axis_tkeep = KEEP_ENABLE ? m_axis_reg[KEEP_OFFSET +: KEEP_WIDTH] : {KEEP_WIDTH{1'b1}}; assign m_axis_tlast = LAST_ENABLE ? m_axis_reg[LAST_OFFSET] : 1'b1; assign m_axis_tid = ID_ENABLE ? m_axis_reg[ID_OFFSET +: ID_WIDTH] : {ID_WIDTH{1'b0}}; assign m_axis_tdest = DEST_ENABLE ? m_axis_reg[DEST_OFFSET +: DEST_WIDTH] : {DEST_WIDTH{1'b0}}; assign m_axis_tuser = USER_ENABLE ? m_axis_reg[USER_OFFSET +: USER_WIDTH] : {USER_WIDTH{1'b0}}; assign s_status_overflow = overflow_reg; assign s_status_bad_frame = bad_frame_reg; assign s_status_good_frame = good_frame_reg; assign m_status_overflow = overflow_sync3_reg ^ overflow_sync4_reg; assign m_status_bad_frame = bad_frame_sync3_reg ^ bad_frame_sync4_reg; assign m_status_good_frame = good_frame_sync3_reg ^ good_frame_sync4_reg; // reset synchronization always @(posedge s_clk or posedge async_rst) begin if (async_rst) begin s_rst_sync1_reg <= 1'b1; s_rst_sync2_reg <= 1'b1; s_rst_sync3_reg <= 1'b1; end else begin s_rst_sync1_reg <= 1'b0; s_rst_sync2_reg <= s_rst_sync1_reg || m_rst_sync1_reg; s_rst_sync3_reg <= s_rst_sync2_reg; end end always @(posedge m_clk or posedge async_rst) begin if (async_rst) begin m_rst_sync1_reg <= 1'b1; m_rst_sync2_reg <= 1'b1; m_rst_sync3_reg <= 1'b1; end else begin m_rst_sync1_reg <= 1'b0; m_rst_sync2_reg <= s_rst_sync1_reg || m_rst_sync1_reg; m_rst_sync3_reg <= m_rst_sync2_reg; end end // Write logic always @* begin write = 1'b0; drop_frame_next = 1'b0; overflow_next = 1'b0; bad_frame_next = 1'b0; good_frame_next = 1'b0; wr_ptr_next = wr_ptr_reg; wr_ptr_cur_next = wr_ptr_cur_reg; wr_ptr_gray_next = wr_ptr_gray_reg; wr_ptr_sync_gray_next = wr_ptr_sync_gray_reg; wr_ptr_cur_gray_next = wr_ptr_cur_gray_reg; wr_ptr_update_valid_next = wr_ptr_update_valid_reg; wr_ptr_update_next = wr_ptr_update_reg; if (FRAME_FIFO && wr_ptr_update_valid_reg) begin // have updated pointer to sync if (wr_ptr_update_next == wr_ptr_update_ack_sync2_reg) begin // no sync in progress; sync update wr_ptr_update_valid_next = 1'b0; wr_ptr_sync_gray_next = wr_ptr_gray_reg; wr_ptr_update_next = !wr_ptr_update_ack_sync2_reg; end end if (s_axis_tready && s_axis_tvalid) begin // transfer in if (!FRAME_FIFO) begin // normal FIFO mode write = 1'b1; wr_ptr_next = wr_ptr_reg + 1; wr_ptr_gray_next = wr_ptr_next ^ (wr_ptr_next >> 1); end else if (full_cur || full_wr || drop_frame_reg) begin // full, packet overflow, or currently dropping frame // drop frame drop_frame_next = 1'b1; if (s_axis_tlast) begin // end of frame, reset write pointer wr_ptr_cur_next = wr_ptr_reg; wr_ptr_cur_gray_next = wr_ptr_cur_next ^ (wr_ptr_cur_next >> 1); drop_frame_next = 1'b0; overflow_next = 1'b1; end end else begin write = 1'b1; wr_ptr_cur_next = wr_ptr_cur_reg + 1; wr_ptr_cur_gray_next = wr_ptr_cur_next ^ (wr_ptr_cur_next >> 1); if (s_axis_tlast) begin // end of frame if (DROP_BAD_FRAME && USER_BAD_FRAME_MASK & ~(s_axis_tuser ^ USER_BAD_FRAME_VALUE)) begin // bad packet, reset write pointer wr_ptr_cur_next = wr_ptr_reg; wr_ptr_cur_gray_next = wr_ptr_cur_next ^ (wr_ptr_cur_next >> 1); bad_frame_next = 1'b1; end else begin // good packet, update write pointer wr_ptr_next = wr_ptr_cur_reg + 1; wr_ptr_gray_next = wr_ptr_next ^ (wr_ptr_next >> 1); if (wr_ptr_update_next == wr_ptr_update_ack_sync2_reg) begin // no sync in progress; sync update wr_ptr_update_valid_next = 1'b0; wr_ptr_sync_gray_next = wr_ptr_gray_next; wr_ptr_update_next = !wr_ptr_update_ack_sync2_reg; end else begin // sync in progress; flag it for later wr_ptr_update_valid_next = 1'b1; end good_frame_next = 1'b1; end end end end end always @(posedge s_clk) begin if (s_rst_sync3_reg) begin wr_ptr_reg <= {ADDR_WIDTH+1{1'b0}}; wr_ptr_cur_reg <= {ADDR_WIDTH+1{1'b0}}; wr_ptr_gray_reg <= {ADDR_WIDTH+1{1'b0}}; wr_ptr_sync_gray_reg <= {ADDR_WIDTH+1{1'b0}}; wr_ptr_cur_gray_reg <= {ADDR_WIDTH+1{1'b0}}; wr_ptr_update_valid_reg <= 1'b0; wr_ptr_update_reg <= 1'b0; drop_frame_reg <= 1'b0; overflow_reg <= 1'b0; bad_frame_reg <= 1'b0; good_frame_reg <= 1'b0; end else begin wr_ptr_reg <= wr_ptr_next; wr_ptr_cur_reg <= wr_ptr_cur_next; wr_ptr_gray_reg <= wr_ptr_gray_next; wr_ptr_sync_gray_reg <= wr_ptr_sync_gray_next; wr_ptr_cur_gray_reg <= wr_ptr_cur_gray_next; wr_ptr_update_valid_reg <= wr_ptr_update_valid_next; wr_ptr_update_reg <= wr_ptr_update_next; drop_frame_reg <= drop_frame_next; overflow_reg <= overflow_next; bad_frame_reg <= bad_frame_next; good_frame_reg <= good_frame_next; end if (FRAME_FIFO) begin wr_addr_reg <= wr_ptr_cur_next; end else begin wr_addr_reg <= wr_ptr_next; end if (write) begin mem[wr_addr_reg[ADDR_WIDTH-1:0]] <= s_axis; end end // pointer synchronization always @(posedge s_clk) begin if (s_rst_sync3_reg) begin rd_ptr_gray_sync1_reg <= {ADDR_WIDTH+1{1'b0}}; rd_ptr_gray_sync2_reg <= {ADDR_WIDTH+1{1'b0}}; wr_ptr_update_ack_sync1_reg <= 1'b0; wr_ptr_update_ack_sync2_reg <= 1'b0; end else begin rd_ptr_gray_sync1_reg <= rd_ptr_gray_reg; rd_ptr_gray_sync2_reg <= rd_ptr_gray_sync1_reg; wr_ptr_update_ack_sync1_reg <= wr_ptr_update_sync3_reg; wr_ptr_update_ack_sync2_reg <= wr_ptr_update_ack_sync1_reg; end end always @(posedge m_clk) begin if (m_rst_sync3_reg) begin wr_ptr_gray_sync1_reg <= {ADDR_WIDTH+1{1'b0}}; wr_ptr_gray_sync2_reg <= {ADDR_WIDTH+1{1'b0}}; wr_ptr_update_sync1_reg <= 1'b0; wr_ptr_update_sync2_reg <= 1'b0; wr_ptr_update_sync3_reg <= 1'b0; end else begin if (!FRAME_FIFO) begin wr_ptr_gray_sync1_reg <= wr_ptr_gray_reg; end else if (wr_ptr_update_sync2_reg ^ wr_ptr_update_sync3_reg) begin wr_ptr_gray_sync1_reg <= wr_ptr_sync_gray_reg; end wr_ptr_gray_sync2_reg <= wr_ptr_gray_sync1_reg; wr_ptr_update_sync1_reg <= wr_ptr_update_reg; wr_ptr_update_sync2_reg <= wr_ptr_update_sync1_reg; wr_ptr_update_sync3_reg <= wr_ptr_update_sync2_reg; end end // status synchronization always @(posedge s_clk) begin if (s_rst_sync3_reg) begin overflow_sync1_reg <= 1'b0; bad_frame_sync1_reg <= 1'b0; good_frame_sync1_reg <= 1'b0; end else begin overflow_sync1_reg <= overflow_sync1_reg ^ overflow_reg; bad_frame_sync1_reg <= bad_frame_sync1_reg ^ bad_frame_reg; good_frame_sync1_reg <= good_frame_sync1_reg ^ good_frame_reg; end end always @(posedge m_clk) begin if (m_rst_sync3_reg) begin overflow_sync2_reg <= 1'b0; overflow_sync3_reg <= 1'b0; overflow_sync4_reg <= 1'b0; bad_frame_sync2_reg <= 1'b0; bad_frame_sync3_reg <= 1'b0; bad_frame_sync4_reg <= 1'b0; good_frame_sync2_reg <= 1'b0; good_frame_sync3_reg <= 1'b0; good_frame_sync4_reg <= 1'b0; end else begin overflow_sync2_reg <= overflow_sync1_reg; overflow_sync3_reg <= overflow_sync2_reg; overflow_sync4_reg <= overflow_sync3_reg; bad_frame_sync2_reg <= bad_frame_sync1_reg; bad_frame_sync3_reg <= bad_frame_sync2_reg; bad_frame_sync4_reg <= bad_frame_sync3_reg; good_frame_sync2_reg <= good_frame_sync1_reg; good_frame_sync3_reg <= good_frame_sync2_reg; good_frame_sync4_reg <= good_frame_sync3_reg; end end // Read logic always @* begin read = 1'b0; rd_ptr_next = rd_ptr_reg; rd_ptr_gray_next = rd_ptr_gray_reg; mem_read_data_valid_next = mem_read_data_valid_reg; if (store_output || !mem_read_data_valid_reg) begin // output data not valid OR currently being transferred if (!empty) begin // not empty, perform read read = 1'b1; mem_read_data_valid_next = 1'b1; rd_ptr_next = rd_ptr_reg + 1; rd_ptr_gray_next = rd_ptr_next ^ (rd_ptr_next >> 1); end else begin // empty, invalidate mem_read_data_valid_next = 1'b0; end end end always @(posedge m_clk) begin if (m_rst_sync3_reg) begin rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}}; rd_ptr_gray_reg <= {ADDR_WIDTH+1{1'b0}}; mem_read_data_valid_reg <= 1'b0; end else begin rd_ptr_reg <= rd_ptr_next; rd_ptr_gray_reg <= rd_ptr_gray_next; mem_read_data_valid_reg <= mem_read_data_valid_next; end rd_addr_reg <= rd_ptr_next; if (read) begin mem_read_data_reg <= mem[rd_addr_reg[ADDR_WIDTH-1:0]]; end end // Output register always @* begin store_output = 1'b0; m_axis_tvalid_next = m_axis_tvalid_reg; if (m_axis_tready || !m_axis_tvalid) begin store_output = 1'b1; m_axis_tvalid_next = mem_read_data_valid_reg; end end always @(posedge m_clk) begin if (m_rst_sync3_reg) begin m_axis_tvalid_reg <= 1'b0; end else begin m_axis_tvalid_reg <= m_axis_tvalid_next; end if (store_output) begin m_axis_reg <= mem_read_data_reg; end end endmodule