/* Copyright (c) 2019 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4 to AXI4-Lite adapter (write) */ module axi_axil_adapter_wr # ( // Width of address bus in bits parameter ADDR_WIDTH = 32, // Width of input (slave) AXI interface data bus in bits parameter AXI_DATA_WIDTH = 32, // Width of input (slave) AXI interface wstrb (width of data bus in words) parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8), // Width of AXI ID signal parameter AXI_ID_WIDTH = 8, // Width of output (master) AXI lite interface data bus in bits parameter AXIL_DATA_WIDTH = 32, // Width of output (master) AXI lite interface wstrb (width of data bus in words) parameter AXIL_STRB_WIDTH = (AXIL_DATA_WIDTH/8), // When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible parameter CONVERT_BURST = 1, // When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible parameter CONVERT_NARROW_BURST = 0 ) ( input wire clk, input wire rst, /* * AXI slave interface */ input wire [AXI_ID_WIDTH-1:0] s_axi_awid, input wire [ADDR_WIDTH-1:0] s_axi_awaddr, input wire [7:0] s_axi_awlen, input wire [2:0] s_axi_awsize, input wire [1:0] s_axi_awburst, input wire s_axi_awlock, input wire [3:0] s_axi_awcache, input wire [2:0] s_axi_awprot, input wire s_axi_awvalid, output wire s_axi_awready, input wire [AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [AXI_STRB_WIDTH-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire s_axi_wvalid, output wire s_axi_wready, output wire [AXI_ID_WIDTH-1:0] s_axi_bid, output wire [1:0] s_axi_bresp, output wire s_axi_bvalid, input wire s_axi_bready, /* * AXI lite master interface */ output wire [ADDR_WIDTH-1:0] m_axil_awaddr, output wire [2:0] m_axil_awprot, output wire m_axil_awvalid, input wire m_axil_awready, output wire [AXIL_DATA_WIDTH-1:0] m_axil_wdata, output wire [AXIL_STRB_WIDTH-1:0] m_axil_wstrb, output wire m_axil_wvalid, input wire m_axil_wready, input wire [1:0] m_axil_bresp, input wire m_axil_bvalid, output wire m_axil_bready ); parameter AXI_ADDR_BIT_OFFSET = $clog2(AXI_STRB_WIDTH); parameter AXIL_ADDR_BIT_OFFSET = $clog2(AXIL_STRB_WIDTH); parameter AXI_WORD_WIDTH = AXI_STRB_WIDTH; parameter AXIL_WORD_WIDTH = AXIL_STRB_WIDTH; parameter AXI_WORD_SIZE = AXI_DATA_WIDTH/AXI_WORD_WIDTH; parameter AXIL_WORD_SIZE = AXIL_DATA_WIDTH/AXIL_WORD_WIDTH; parameter AXI_BURST_SIZE = $clog2(AXI_STRB_WIDTH); parameter AXIL_BURST_SIZE = $clog2(AXIL_STRB_WIDTH); // output bus is wider parameter EXPAND = AXIL_STRB_WIDTH > AXI_STRB_WIDTH; parameter DATA_WIDTH = EXPAND ? AXIL_DATA_WIDTH : AXI_DATA_WIDTH; parameter STRB_WIDTH = EXPAND ? AXIL_STRB_WIDTH : AXI_STRB_WIDTH; // required number of segments in wider bus parameter SEGMENT_COUNT = EXPAND ? (AXIL_STRB_WIDTH / AXI_STRB_WIDTH) : (AXI_STRB_WIDTH / AXIL_STRB_WIDTH); // data width and keep width per segment parameter SEGMENT_DATA_WIDTH = DATA_WIDTH / SEGMENT_COUNT; parameter SEGMENT_STRB_WIDTH = STRB_WIDTH / SEGMENT_COUNT; // bus width assertions initial begin if (AXI_WORD_SIZE * AXI_STRB_WIDTH != AXI_DATA_WIDTH) begin $error("Error: AXI slave interface data width not evenly divisble (instance %m)"); $finish; end if (AXIL_WORD_SIZE * AXIL_STRB_WIDTH != AXIL_DATA_WIDTH) begin $error("Error: AXI lite master interface data width not evenly divisble (instance %m)"); $finish; end if (AXI_WORD_SIZE != AXIL_WORD_SIZE) begin $error("Error: word size mismatch (instance %m)"); $finish; end if (2**$clog2(AXI_WORD_WIDTH) != AXI_WORD_WIDTH) begin $error("Error: AXI slave interface word width must be even power of two (instance %m)"); $finish; end if (2**$clog2(AXIL_WORD_WIDTH) != AXIL_WORD_WIDTH) begin $error("Error: AXI lite master interface word width must be even power of two (instance %m)"); $finish; end end localparam [1:0] STATE_IDLE = 2'd0, STATE_DATA = 2'd1, STATE_DATA_2 = 2'd2, STATE_RESP = 2'd3; reg [1:0] state_reg = STATE_IDLE, state_next; reg [AXI_ID_WIDTH-1:0] id_reg = {AXI_ID_WIDTH{1'b0}}, id_next; reg [ADDR_WIDTH-1:0] addr_reg = {ADDR_WIDTH{1'b0}}, addr_next; reg [DATA_WIDTH-1:0] data_reg = {DATA_WIDTH{1'b0}}, data_next; reg [STRB_WIDTH-1:0] strb_reg = {STRB_WIDTH{1'b0}}, strb_next; reg [7:0] burst_reg = 8'd0, burst_next; reg [2:0] burst_size_reg = 3'd0, burst_size_next; reg [2:0] master_burst_size_reg = 3'd0, master_burst_size_next; reg burst_active_reg = 1'b0, burst_active_next; reg convert_burst_reg = 1'b0, convert_burst_next; reg first_transfer_reg = 1'b0, first_transfer_next; reg last_segment_reg = 1'b0, last_segment_next; reg s_axi_awready_reg = 1'b0, s_axi_awready_next; reg s_axi_wready_reg = 1'b0, s_axi_wready_next; reg [AXI_ID_WIDTH-1:0] s_axi_bid_reg = {AXI_ID_WIDTH{1'b0}}, s_axi_bid_next; reg [1:0] s_axi_bresp_reg = 2'd0, s_axi_bresp_next; reg s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next; reg [ADDR_WIDTH-1:0] m_axil_awaddr_reg = {ADDR_WIDTH{1'b0}}, m_axil_awaddr_next; reg [2:0] m_axil_awprot_reg = 3'd0, m_axil_awprot_next; reg m_axil_awvalid_reg = 1'b0, m_axil_awvalid_next; reg [AXIL_DATA_WIDTH-1:0] m_axil_wdata_reg = {AXIL_DATA_WIDTH{1'b0}}, m_axil_wdata_next; reg [AXIL_STRB_WIDTH-1:0] m_axil_wstrb_reg = {AXIL_STRB_WIDTH{1'b0}}, m_axil_wstrb_next; reg m_axil_wvalid_reg = 1'b0, m_axil_wvalid_next; reg m_axil_bready_reg = 1'b0, m_axil_bready_next; assign s_axi_awready = s_axi_awready_reg; assign s_axi_wready = s_axi_wready_reg; assign s_axi_bid = s_axi_bid_reg; assign s_axi_bresp = s_axi_bresp_reg; assign s_axi_bvalid = s_axi_bvalid_reg; assign m_axil_awaddr = m_axil_awaddr_reg; //assign m_axil_awlen = m_axil_awlen_reg; //assign m_axil_awsize = m_axil_awsize_reg; //assign m_axil_awburst = m_axil_awburst_reg; assign m_axil_awprot = m_axil_awprot_reg; assign m_axil_awvalid = m_axil_awvalid_reg; assign m_axil_wdata = m_axil_wdata_reg; assign m_axil_wstrb = m_axil_wstrb_reg; assign m_axil_wvalid = m_axil_wvalid_reg; assign m_axil_bready = m_axil_bready_reg; integer i; always @* begin state_next = STATE_IDLE; id_next = id_reg; addr_next = addr_reg; data_next = data_reg; strb_next = strb_reg; burst_next = burst_reg; burst_size_next = burst_size_reg; master_burst_size_next = master_burst_size_reg; burst_active_next = burst_active_reg; convert_burst_next = convert_burst_reg; first_transfer_next = first_transfer_reg; last_segment_next = last_segment_reg; s_axi_awready_next = 1'b0; s_axi_wready_next = 1'b0; s_axi_bid_next = s_axi_bid_reg; s_axi_bresp_next = s_axi_bresp_reg; s_axi_bvalid_next = s_axi_bvalid_reg && !s_axi_bready; m_axil_awaddr_next = m_axil_awaddr_reg; m_axil_awprot_next = m_axil_awprot_reg; m_axil_awvalid_next = m_axil_awvalid_reg && !m_axil_awready; m_axil_wdata_next = m_axil_wdata_reg; m_axil_wstrb_next = m_axil_wstrb_reg; m_axil_wvalid_next = m_axil_wvalid_reg && !m_axil_wready; m_axil_bready_next = 1'b0; if (SEGMENT_COUNT == 1) begin // master output is same width; direct transfer with no splitting/merging case (state_reg) STATE_IDLE: begin // idle state; wait for new burst s_axi_awready_next = !m_axil_awvalid; first_transfer_next = 1'b1; if (s_axi_awready && s_axi_awvalid) begin s_axi_awready_next = 1'b0; id_next = s_axi_awid; m_axil_awaddr_next = s_axi_awaddr; addr_next = s_axi_awaddr; burst_next = s_axi_awlen; burst_size_next = s_axi_awsize; burst_active_next = 1'b1; m_axil_awprot_next = s_axi_awprot; m_axil_awvalid_next = 1'b1; s_axi_wready_next = !m_axil_wvalid; state_next = STATE_DATA; end else begin state_next = STATE_IDLE; end end STATE_DATA: begin // data state; transfer write data s_axi_wready_next = !m_axil_wvalid; if (s_axi_wready && s_axi_wvalid) begin m_axil_wdata_next = s_axi_wdata; m_axil_wstrb_next = s_axi_wstrb; m_axil_wvalid_next = 1'b1; burst_next = burst_reg - 1; burst_active_next = burst_reg != 0; addr_next = addr_reg + (1 << burst_size_reg); s_axi_wready_next = 1'b0; m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid; state_next = STATE_RESP; end else begin state_next = STATE_DATA; end end STATE_RESP: begin // resp state; transfer write response m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid; if (m_axil_bready && m_axil_bvalid) begin m_axil_bready_next = 1'b0; s_axi_bid_next = id_reg; first_transfer_next = 1'b0; if (first_transfer_reg || m_axil_bresp != 0) begin s_axi_bresp_next = m_axil_bresp; end if (burst_active_reg) begin // burst on slave interface still active; start new AXI lite write m_axil_awaddr_next = addr_reg; m_axil_awvalid_next = 1'b1; s_axi_wready_next = !m_axil_wvalid; state_next = STATE_DATA; end else begin // burst on slave interface finished; return to idle s_axi_bvalid_next = 1'b1; s_axi_awready_next = !m_axil_awvalid; state_next = STATE_IDLE; end end else begin state_next = STATE_RESP; end end endcase end else if (EXPAND) begin // master output is wider; merge writes case (state_reg) STATE_IDLE: begin // idle state; wait for new burst s_axi_awready_next = !m_axil_awvalid; first_transfer_next = 1'b1; data_next = {DATA_WIDTH{1'b0}}; strb_next = {STRB_WIDTH{1'b0}}; if (s_axi_awready && s_axi_awvalid) begin s_axi_awready_next = 1'b0; id_next = s_axi_awid; m_axil_awaddr_next = s_axi_awaddr; addr_next = s_axi_awaddr; burst_next = s_axi_awlen; burst_size_next = s_axi_awsize; if (CONVERT_BURST && s_axi_awcache[1] && (CONVERT_NARROW_BURST || s_axi_awsize == AXI_BURST_SIZE)) begin // merge writes // require CONVERT_BURST and awcache[1] set convert_burst_next = 1'b1; master_burst_size_next = AXIL_BURST_SIZE; state_next = STATE_DATA_2; end else begin // output narrow burst convert_burst_next = 1'b0; master_burst_size_next = s_axi_awsize; state_next = STATE_DATA; end m_axil_awprot_next = s_axi_awprot; m_axil_awvalid_next = 1'b1; s_axi_wready_next = !m_axil_wvalid; end else begin state_next = STATE_IDLE; end end STATE_DATA: begin // data state; transfer write data s_axi_wready_next = !m_axil_wvalid || m_axil_wready; if (s_axi_wready && s_axi_wvalid) begin m_axil_wdata_next = {(AXIL_WORD_WIDTH/AXI_WORD_WIDTH){s_axi_wdata}}; m_axil_wstrb_next = s_axi_wstrb << (addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET] * AXI_STRB_WIDTH); m_axil_wvalid_next = 1'b1; burst_next = burst_reg - 1; burst_active_next = burst_reg != 0; addr_next = addr_reg + (1 << burst_size_reg); s_axi_wready_next = 1'b0; m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid; state_next = STATE_RESP; end else begin state_next = STATE_DATA; end end STATE_DATA_2: begin s_axi_wready_next = !m_axil_wvalid; if (s_axi_wready && s_axi_wvalid) begin if (CONVERT_NARROW_BURST) begin for (i = 0; i < AXI_WORD_WIDTH; i = i + 1) begin if (s_axi_wstrb[i]) begin data_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET]*SEGMENT_DATA_WIDTH+i*AXIL_WORD_SIZE +: AXIL_WORD_SIZE] = s_axi_wdata[i*AXIL_WORD_SIZE +: AXIL_WORD_SIZE]; strb_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET]*SEGMENT_STRB_WIDTH+i] = 1'b1; end end end else begin data_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET]*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH] = s_axi_wdata; strb_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET]*SEGMENT_STRB_WIDTH +: SEGMENT_STRB_WIDTH] = s_axi_wstrb; end m_axil_wdata_next = data_next; m_axil_wstrb_next = strb_next; burst_next = burst_reg - 1; burst_active_next = burst_reg != 0; addr_next = addr_reg + (1 << burst_size_reg); if (burst_reg == 0 || addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin data_next = {DATA_WIDTH{1'b0}}; strb_next = {STRB_WIDTH{1'b0}}; m_axil_wvalid_next = 1'b1; s_axi_wready_next = 1'b0; m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid; state_next = STATE_RESP; end else begin state_next = STATE_DATA_2; end end else begin state_next = STATE_DATA_2; end end STATE_RESP: begin // resp state; transfer write response m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid; if (m_axil_bready && m_axil_bvalid) begin m_axil_bready_next = 1'b0; s_axi_bid_next = id_reg; first_transfer_next = 1'b0; if (first_transfer_reg || m_axil_bresp != 0) begin s_axi_bresp_next = m_axil_bresp; end if (burst_active_reg) begin // burst on slave interface still active; start new AXI lite write m_axil_awaddr_next = addr_reg; m_axil_awvalid_next = 1'b1; s_axi_wready_next = !m_axil_wvalid || m_axil_wready; if (convert_burst_reg) begin state_next = STATE_DATA_2; end else begin state_next = STATE_DATA; end end else begin // burst on slave interface finished; return to idle s_axi_bvalid_next = 1'b1; s_axi_awready_next = !m_axil_awvalid; state_next = STATE_IDLE; end end else begin state_next = STATE_RESP; end end endcase end else begin // master output is narrower; split writes, and possibly split burst case (state_reg) STATE_IDLE: begin // idle state; wait for new burst s_axi_awready_next = !m_axil_awvalid; first_transfer_next = 1'b1; if (s_axi_awready && s_axi_awvalid) begin s_axi_awready_next = 1'b0; id_next = s_axi_awid; m_axil_awaddr_next = s_axi_awaddr; addr_next = s_axi_awaddr; burst_next = s_axi_awlen; burst_size_next = s_axi_awsize; burst_active_next = 1'b1; if (s_axi_awsize > AXIL_BURST_SIZE) begin // need to adjust burst size master_burst_size_next = AXIL_BURST_SIZE; end else begin // pass through narrow (enough) burst master_burst_size_next = s_axi_awsize; end m_axil_awprot_next = s_axi_awprot; m_axil_awvalid_next = 1'b1; s_axi_wready_next = !m_axil_wvalid; state_next = STATE_DATA; end else begin state_next = STATE_IDLE; end end STATE_DATA: begin s_axi_wready_next = !m_axil_wvalid; if (s_axi_wready && s_axi_wvalid) begin data_next = s_axi_wdata; strb_next = s_axi_wstrb; m_axil_wdata_next = s_axi_wdata >> (addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET] * AXIL_DATA_WIDTH); m_axil_wstrb_next = s_axi_wstrb >> (addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET] * AXIL_STRB_WIDTH); m_axil_wvalid_next = 1'b1; burst_next = burst_reg - 1; burst_active_next = burst_reg != 0; addr_next = addr_reg + (1 << master_burst_size_reg); last_segment_next = addr_next[burst_size_reg] != addr_reg[burst_size_reg]; s_axi_wready_next = 1'b0; m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid; state_next = STATE_RESP; end else begin state_next = STATE_DATA; end end STATE_DATA_2: begin s_axi_wready_next = 1'b0; if (!m_axil_wvalid || m_axil_wready) begin m_axil_wdata_next = data_reg >> (addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET] * AXIL_DATA_WIDTH); m_axil_wstrb_next = strb_reg >> (addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET] * AXIL_STRB_WIDTH); m_axil_wvalid_next = 1'b1; addr_next = addr_reg + (1 << master_burst_size_reg); last_segment_next = addr_next[burst_size_reg] != addr_reg[burst_size_reg]; s_axi_wready_next = 1'b0; m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid; state_next = STATE_RESP; end else begin state_next = STATE_DATA_2; end end STATE_RESP: begin // resp state; transfer write response m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid; if (m_axil_bready && m_axil_bvalid) begin first_transfer_next = 1'b0; m_axil_bready_next = 1'b0; s_axi_bid_next = id_reg; if (first_transfer_reg || m_axil_bresp != 0) begin s_axi_bresp_next = m_axil_bresp; end if (burst_active_reg || !last_segment_reg) begin // burst on slave interface still active; start new burst m_axil_awaddr_next = addr_reg; m_axil_awvalid_next = 1'b1; if (last_segment_reg) begin s_axi_wready_next = !m_axil_wvalid; state_next = STATE_DATA; end else begin s_axi_wready_next = 1'b0; state_next = STATE_DATA_2; end end else begin // burst on slave interface finished; return to idle s_axi_bvalid_next = 1'b1; s_axi_awready_next = !m_axil_awvalid; state_next = STATE_IDLE; end end else begin state_next = STATE_RESP; end end endcase end end always @(posedge clk) begin if (rst) begin state_reg <= STATE_IDLE; s_axi_awready_reg <= 1'b0; s_axi_wready_reg <= 1'b0; s_axi_bvalid_reg <= 1'b0; m_axil_awvalid_reg <= 1'b0; m_axil_wvalid_reg <= 1'b0; m_axil_bready_reg <= 1'b0; end else begin state_reg <= state_next; s_axi_awready_reg <= s_axi_awready_next; s_axi_wready_reg <= s_axi_wready_next; s_axi_bvalid_reg <= s_axi_bvalid_next; m_axil_awvalid_reg <= m_axil_awvalid_next; m_axil_wvalid_reg <= m_axil_wvalid_next; m_axil_bready_reg <= m_axil_bready_next; end id_reg <= id_next; addr_reg <= addr_next; data_reg <= data_next; strb_reg <= strb_next; burst_reg <= burst_next; burst_size_reg <= burst_size_next; master_burst_size_reg <= master_burst_size_next; burst_active_reg <= burst_active_next; convert_burst_reg <= convert_burst_next; first_transfer_reg <= first_transfer_next; last_segment_reg <= last_segment_next; s_axi_bid_reg <= s_axi_bid_next; s_axi_bresp_reg <= s_axi_bresp_next; m_axil_awaddr_reg <= m_axil_awaddr_next; m_axil_awprot_reg <= m_axil_awprot_next; m_axil_wdata_reg <= m_axil_wdata_next; m_axil_wstrb_reg <= m_axil_wstrb_next; end endmodule