/* Copyright (c) 2014-2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4-Stream bus width adapter */ module axis_adapter # ( parameter S_DATA_WIDTH = 8, parameter S_KEEP_ENABLE = (S_DATA_WIDTH>8), parameter S_KEEP_WIDTH = (S_DATA_WIDTH/8), parameter M_DATA_WIDTH = 8, parameter M_KEEP_ENABLE = (M_DATA_WIDTH>8), parameter M_KEEP_WIDTH = (M_DATA_WIDTH/8), parameter ID_ENABLE = 0, parameter ID_WIDTH = 8, parameter DEST_ENABLE = 0, parameter DEST_WIDTH = 8, parameter USER_ENABLE = 1, parameter USER_WIDTH = 1 ) ( input wire clk, input wire rst, /* * AXI input */ input wire [S_DATA_WIDTH-1:0] s_axis_tdata, input wire [S_KEEP_WIDTH-1:0] s_axis_tkeep, input wire s_axis_tvalid, output wire s_axis_tready, input wire s_axis_tlast, input wire [ID_WIDTH-1:0] s_axis_tid, input wire [DEST_WIDTH-1:0] s_axis_tdest, input wire [USER_WIDTH-1:0] s_axis_tuser, /* * AXI output */ output wire [M_DATA_WIDTH-1:0] m_axis_tdata, output wire [M_KEEP_WIDTH-1:0] m_axis_tkeep, output wire m_axis_tvalid, input wire m_axis_tready, output wire m_axis_tlast, output wire [ID_WIDTH-1:0] m_axis_tid, output wire [DEST_WIDTH-1:0] m_axis_tdest, output wire [USER_WIDTH-1:0] m_axis_tuser ); // force keep width to 1 when disabled parameter S_KEEP_WIDTH_INT = S_KEEP_ENABLE ? S_KEEP_WIDTH : 1; parameter M_KEEP_WIDTH_INT = M_KEEP_ENABLE ? M_KEEP_WIDTH : 1; // bus word sizes (must be identical) parameter S_DATA_WORD_SIZE = S_DATA_WIDTH / S_KEEP_WIDTH_INT; parameter M_DATA_WORD_SIZE = M_DATA_WIDTH / M_KEEP_WIDTH_INT; // output bus is wider parameter EXPAND_BUS = M_KEEP_WIDTH_INT > S_KEEP_WIDTH_INT; // total data and keep widths parameter DATA_WIDTH = EXPAND_BUS ? M_DATA_WIDTH : S_DATA_WIDTH; parameter KEEP_WIDTH = EXPAND_BUS ? M_KEEP_WIDTH_INT : S_KEEP_WIDTH_INT; // required number of segments in wider bus parameter SEGMENT_COUNT = EXPAND_BUS ? (M_KEEP_WIDTH_INT / S_KEEP_WIDTH_INT) : (S_KEEP_WIDTH_INT / M_KEEP_WIDTH_INT); parameter SEGMENT_COUNT_WIDTH = SEGMENT_COUNT == 1 ? 1 : $clog2(SEGMENT_COUNT); // data width and keep width per segment parameter SEGMENT_DATA_WIDTH = DATA_WIDTH / SEGMENT_COUNT; parameter SEGMENT_KEEP_WIDTH = KEEP_WIDTH / SEGMENT_COUNT; // bus width assertions initial begin if (S_DATA_WORD_SIZE * S_KEEP_WIDTH_INT != S_DATA_WIDTH) begin $error("Error: input data width not evenly divisble"); $finish; end if (M_DATA_WORD_SIZE * M_KEEP_WIDTH_INT != M_DATA_WIDTH) begin $error("Error: output data width not evenly divisble"); $finish; end if (S_DATA_WORD_SIZE != M_DATA_WORD_SIZE) begin $error("Error: word size mismatch"); $finish; end end // state register localparam [2:0] STATE_IDLE = 3'd0, STATE_TRANSFER_IN = 3'd1, STATE_TRANSFER_OUT = 3'd2; reg [2:0] state_reg = STATE_IDLE, state_next; reg [SEGMENT_COUNT_WIDTH-1:0] segment_count_reg = 0, segment_count_next; reg last_segment; reg [DATA_WIDTH-1:0] temp_tdata_reg = {DATA_WIDTH{1'b0}}, temp_tdata_next; reg [KEEP_WIDTH-1:0] temp_tkeep_reg = {KEEP_WIDTH{1'b0}}, temp_tkeep_next; reg temp_tlast_reg = 1'b0, temp_tlast_next; reg [ID_WIDTH-1:0] temp_tid_reg = {ID_WIDTH{1'b0}}, temp_tid_next; reg [DEST_WIDTH-1:0] temp_tdest_reg = {DEST_WIDTH{1'b0}}, temp_tdest_next; reg [USER_WIDTH-1:0] temp_tuser_reg = {USER_WIDTH{1'b0}}, temp_tuser_next; // internal datapath reg [M_DATA_WIDTH-1:0] m_axis_tdata_int; reg [M_KEEP_WIDTH-1:0] m_axis_tkeep_int; reg m_axis_tvalid_int; reg m_axis_tready_int_reg = 1'b0; reg m_axis_tlast_int; reg [ID_WIDTH-1:0] m_axis_tid_int; reg [DEST_WIDTH-1:0] m_axis_tdest_int; reg [USER_WIDTH-1:0] m_axis_tuser_int; wire m_axis_tready_int_early; reg s_axis_tready_reg = 1'b0, s_axis_tready_next; assign s_axis_tready = s_axis_tready_reg; always @* begin state_next = STATE_IDLE; segment_count_next = segment_count_reg; last_segment = 0; temp_tdata_next = temp_tdata_reg; temp_tkeep_next = temp_tkeep_reg; temp_tlast_next = temp_tlast_reg; temp_tid_next = temp_tid_reg; temp_tdest_next = temp_tdest_reg; temp_tuser_next = temp_tuser_reg; if (EXPAND_BUS) begin m_axis_tdata_int = temp_tdata_reg; m_axis_tkeep_int = temp_tkeep_reg; m_axis_tlast_int = temp_tlast_reg; end else begin m_axis_tdata_int = {M_DATA_WIDTH{1'b0}}; m_axis_tkeep_int = {M_KEEP_WIDTH{1'b0}}; m_axis_tlast_int = 1'b0; end m_axis_tvalid_int = 1'b0; m_axis_tid_int = temp_tid_reg; m_axis_tdest_int = temp_tdest_reg; m_axis_tuser_int = temp_tuser_reg; s_axis_tready_next = 1'b0; case (state_reg) STATE_IDLE: begin // idle state - no data in registers if (SEGMENT_COUNT == 1) begin // output and input same width - just act like a register // accept data next cycle if output register ready next cycle s_axis_tready_next = m_axis_tready_int_early; // transfer through m_axis_tdata_int = s_axis_tdata; m_axis_tkeep_int = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1; m_axis_tvalid_int = s_axis_tvalid; m_axis_tlast_int = s_axis_tlast; m_axis_tid_int = s_axis_tid; m_axis_tdest_int = s_axis_tdest; m_axis_tuser_int = s_axis_tuser; state_next = STATE_IDLE; end else if (EXPAND_BUS) begin // output bus is wider // accept new data s_axis_tready_next = 1'b1; if (s_axis_tready && s_axis_tvalid) begin // word transfer in - store it in data register // pass complete input word, zero-extended to temp register temp_tdata_next = s_axis_tdata; temp_tkeep_next = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1; temp_tlast_next = s_axis_tlast; temp_tid_next = s_axis_tid; temp_tdest_next = s_axis_tdest; temp_tuser_next = s_axis_tuser; // first input segment complete segment_count_next = 1; if (s_axis_tlast) begin // got last signal on first segment, so output it s_axis_tready_next = 1'b0; state_next = STATE_TRANSFER_OUT; end else begin // otherwise, transfer in the rest of the words s_axis_tready_next = 1'b1; state_next = STATE_TRANSFER_IN; end end else begin state_next = STATE_IDLE; end end else begin // output bus is narrower // accept new data s_axis_tready_next = 1'b1; if (s_axis_tready && s_axis_tvalid) begin // word transfer in - store it in data register segment_count_next = 0; // is this the last segment? if (SEGMENT_COUNT == 1) begin // last segment by counter value last_segment = 1'b1; end else if (S_KEEP_ENABLE && s_axis_tkeep[SEGMENT_KEEP_WIDTH-1:0] != {SEGMENT_KEEP_WIDTH{1'b1}}) begin // last segment by tkeep fall in current segment last_segment = 1'b1; end else if (S_KEEP_ENABLE && s_axis_tkeep[(SEGMENT_KEEP_WIDTH*2)-1:SEGMENT_KEEP_WIDTH] == {SEGMENT_KEEP_WIDTH{1'b0}}) begin // last segment by tkeep fall at end of current segment last_segment = 1'b1; end else begin last_segment = 1'b0; end // pass complete input word, zero-extended to temp register temp_tdata_next = s_axis_tdata; temp_tkeep_next = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1; temp_tlast_next = s_axis_tlast; temp_tid_next = s_axis_tid; temp_tdest_next = s_axis_tdest; temp_tuser_next = s_axis_tuser; // short-circuit and get first word out the door m_axis_tdata_int = s_axis_tdata[SEGMENT_DATA_WIDTH-1:0]; m_axis_tkeep_int = s_axis_tkeep[SEGMENT_KEEP_WIDTH-1:0]; m_axis_tvalid_int = 1'b1; m_axis_tlast_int = s_axis_tlast & last_segment; m_axis_tid_int = s_axis_tid; m_axis_tdest_int = s_axis_tdest; m_axis_tuser_int = s_axis_tuser; if (m_axis_tready_int_reg) begin // if output register is ready for first word, then move on to the next one segment_count_next = 1; end if (!last_segment || !m_axis_tready_int_reg) begin // continue outputting words s_axis_tready_next = 1'b0; state_next = STATE_TRANSFER_OUT; end else begin state_next = STATE_IDLE; end end else begin state_next = STATE_IDLE; end end end STATE_TRANSFER_IN: begin // transfer word to temp registers // only used when output is wider // accept new data s_axis_tready_next = 1'b1; if (s_axis_tready && s_axis_tvalid) begin // word transfer in - store in data register temp_tdata_next[segment_count_reg*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH] = s_axis_tdata; temp_tkeep_next[segment_count_reg*SEGMENT_KEEP_WIDTH +: SEGMENT_KEEP_WIDTH] = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1; temp_tlast_next = s_axis_tlast; temp_tid_next = s_axis_tid; temp_tdest_next = s_axis_tdest; temp_tuser_next = s_axis_tuser; segment_count_next = segment_count_reg + 1; if ((segment_count_reg == SEGMENT_COUNT-1) || s_axis_tlast) begin // terminated by counter or tlast signal, output complete word // read input word next cycle if output will be ready s_axis_tready_next = m_axis_tready_int_early; state_next = STATE_TRANSFER_OUT; end else begin // more words to read s_axis_tready_next = 1'b1; state_next = STATE_TRANSFER_IN; end end else begin state_next = STATE_TRANSFER_IN; end end STATE_TRANSFER_OUT: begin // transfer word to output registers if (EXPAND_BUS) begin // output bus is wider // do not accept new data s_axis_tready_next = 1'b0; // single-cycle output of entire stored word (output wider) m_axis_tdata_int = temp_tdata_reg; m_axis_tkeep_int = temp_tkeep_reg; m_axis_tvalid_int = 1'b1; m_axis_tlast_int = temp_tlast_reg; m_axis_tid_int = temp_tid_reg; m_axis_tdest_int = temp_tdest_reg; m_axis_tuser_int = temp_tuser_reg; if (m_axis_tready_int_reg) begin // word transfer out if (s_axis_tready && s_axis_tvalid) begin // word transfer in // pass complete input word, zero-extended to temp register temp_tdata_next = s_axis_tdata; temp_tkeep_next = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1; temp_tlast_next = s_axis_tlast; temp_tid_next = s_axis_tid; temp_tdest_next = s_axis_tdest; temp_tuser_next = s_axis_tuser; // first input segment complete segment_count_next = 1; if (s_axis_tlast) begin // got last signal on first segment, so output it s_axis_tready_next = 1'b0; state_next = STATE_TRANSFER_OUT; end else begin // otherwise, transfer in the rest of the words s_axis_tready_next = 1'b1; state_next = STATE_TRANSFER_IN; end end else begin s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end else begin state_next = STATE_TRANSFER_OUT; end end else begin // output bus is narrower // do not accept new data s_axis_tready_next = 1'b0; // is this the last segment? if (segment_count_reg == SEGMENT_COUNT-1) begin // last segment by counter value last_segment = 1'b1; end else if (temp_tkeep_reg[segment_count_reg*SEGMENT_KEEP_WIDTH +: SEGMENT_KEEP_WIDTH] != {SEGMENT_KEEP_WIDTH{1'b1}}) begin // last segment by tkeep fall in current segment last_segment = 1'b1; end else if (temp_tkeep_reg[(segment_count_reg+1)*SEGMENT_KEEP_WIDTH +: SEGMENT_KEEP_WIDTH] == {SEGMENT_KEEP_WIDTH{1'b0}}) begin // last segment by tkeep fall at end of current segment last_segment = 1'b1; end else begin last_segment = 1'b0; end // output current part of stored word (output narrower) m_axis_tdata_int = temp_tdata_reg[segment_count_reg*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH]; m_axis_tkeep_int = temp_tkeep_reg[segment_count_reg*SEGMENT_KEEP_WIDTH +: SEGMENT_KEEP_WIDTH]; m_axis_tvalid_int = 1'b1; m_axis_tlast_int = temp_tlast_reg && last_segment; m_axis_tid_int = temp_tid_reg; m_axis_tdest_int = temp_tdest_reg; m_axis_tuser_int = temp_tuser_reg; if (m_axis_tready_int_reg) begin // word transfer out segment_count_next = segment_count_reg + 1; if (last_segment) begin // terminated by counter or tlast signal s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end else begin // more words to write state_next = STATE_TRANSFER_OUT; end end else begin state_next = STATE_TRANSFER_OUT; end end end endcase end always @(posedge clk) begin if (rst) begin state_reg <= STATE_IDLE; s_axis_tready_reg <= 1'b0; end else begin state_reg <= state_next; s_axis_tready_reg <= s_axis_tready_next; end segment_count_reg <= segment_count_next; temp_tdata_reg <= temp_tdata_next; temp_tkeep_reg <= temp_tkeep_next; temp_tlast_reg <= temp_tlast_next; temp_tid_reg <= temp_tid_next; temp_tdest_reg <= temp_tdest_next; temp_tuser_reg <= temp_tuser_next; end // output datapath logic reg [M_DATA_WIDTH-1:0] m_axis_tdata_reg = {M_DATA_WIDTH{1'b0}}; reg [M_KEEP_WIDTH-1:0] m_axis_tkeep_reg = {M_KEEP_WIDTH{1'b0}}; reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next; reg m_axis_tlast_reg = 1'b0; reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}}; reg [M_DATA_WIDTH-1:0] temp_m_axis_tdata_reg = {M_DATA_WIDTH{1'b0}}; reg [M_KEEP_WIDTH-1:0] temp_m_axis_tkeep_reg = {M_KEEP_WIDTH{1'b0}}; reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next; reg temp_m_axis_tlast_reg = 1'b0; reg [ID_WIDTH-1:0] temp_m_axis_tid_reg = {ID_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] temp_m_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] temp_m_axis_tuser_reg = {USER_WIDTH{1'b0}}; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_axis_temp_to_output; assign m_axis_tdata = m_axis_tdata_reg; assign m_axis_tkeep = M_KEEP_ENABLE ? m_axis_tkeep_reg : {M_KEEP_WIDTH{1'b1}}; assign m_axis_tvalid = m_axis_tvalid_reg; assign m_axis_tlast = m_axis_tlast_reg; assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}}; assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}}; assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}}; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int)); always @* begin // transfer sink ready state to source m_axis_tvalid_next = m_axis_tvalid_reg; temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_temp_to_output = 1'b0; if (m_axis_tready_int_reg) begin // input is ready if (m_axis_tready || !m_axis_tvalid_reg) begin // output is ready or currently not valid, transfer data to output m_axis_tvalid_next = m_axis_tvalid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axis_tvalid_next = m_axis_tvalid_int; store_axis_int_to_temp = 1'b1; end end else if (m_axis_tready) begin // input is not ready, but output is ready m_axis_tvalid_next = temp_m_axis_tvalid_reg; temp_m_axis_tvalid_next = 1'b0; store_axis_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin m_axis_tvalid_reg <= 1'b0; m_axis_tready_int_reg <= 1'b0; temp_m_axis_tvalid_reg <= 1'b0; end else begin m_axis_tvalid_reg <= m_axis_tvalid_next; m_axis_tready_int_reg <= m_axis_tready_int_early; temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next; end // datapath if (store_axis_int_to_output) begin m_axis_tdata_reg <= m_axis_tdata_int; m_axis_tkeep_reg <= m_axis_tkeep_int; m_axis_tlast_reg <= m_axis_tlast_int; m_axis_tid_reg <= m_axis_tid_int; m_axis_tdest_reg <= m_axis_tdest_int; m_axis_tuser_reg <= m_axis_tuser_int; end else if (store_axis_temp_to_output) begin m_axis_tdata_reg <= temp_m_axis_tdata_reg; m_axis_tkeep_reg <= temp_m_axis_tkeep_reg; m_axis_tlast_reg <= temp_m_axis_tlast_reg; m_axis_tid_reg <= temp_m_axis_tid_reg; m_axis_tdest_reg <= temp_m_axis_tdest_reg; m_axis_tuser_reg <= temp_m_axis_tuser_reg; end if (store_axis_int_to_temp) begin temp_m_axis_tdata_reg <= m_axis_tdata_int; temp_m_axis_tkeep_reg <= m_axis_tkeep_int; temp_m_axis_tlast_reg <= m_axis_tlast_int; temp_m_axis_tid_reg <= m_axis_tid_int; temp_m_axis_tdest_reg <= m_axis_tdest_int; temp_m_axis_tuser_reg <= m_axis_tuser_int; end end endmodule