/* Copyright (c) 2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * Ultrascale PCIe AXI DMA Read */ module pcie_us_axi_dma_rd # ( // Width of PCIe AXI stream interfaces in bits parameter AXIS_PCIE_DATA_WIDTH = 256, // PCIe AXI stream tkeep signal width (words per cycle) parameter AXIS_PCIE_KEEP_WIDTH = (AXIS_PCIE_DATA_WIDTH/32), // PCIe AXI stream RC tuser signal width parameter AXIS_PCIE_RC_USER_WIDTH = AXIS_PCIE_DATA_WIDTH < 512 ? 75 : 161, // PCIe AXI stream RQ tuser signal width parameter AXIS_PCIE_RQ_USER_WIDTH = AXIS_PCIE_DATA_WIDTH < 512 ? 60 : 137, // RQ sequence number width parameter RQ_SEQ_NUM_WIDTH = AXIS_PCIE_RQ_USER_WIDTH == 60 ? 4 : 6, // RQ sequence number tracking enable parameter RQ_SEQ_NUM_ENABLE = 0, // Width of AXI data bus in bits parameter AXI_DATA_WIDTH = AXIS_PCIE_DATA_WIDTH, // Width of AXI address bus in bits parameter AXI_ADDR_WIDTH = 64, // Width of AXI wstrb (width of data bus in words) parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8), // Width of AXI ID signal parameter AXI_ID_WIDTH = 8, // Maximum AXI burst length to generate parameter AXI_MAX_BURST_LEN = 256, // PCIe address width parameter PCIE_ADDR_WIDTH = 64, // PCIe tag count parameter PCIE_TAG_COUNT = AXIS_PCIE_RQ_USER_WIDTH == 60 ? 64 : 256, // PCIe tag field width parameter PCIE_TAG_WIDTH = $clog2(PCIE_TAG_COUNT), // Support PCIe extended tags parameter PCIE_EXT_TAG_ENABLE = (PCIE_TAG_COUNT>32), // Length field width parameter LEN_WIDTH = 20, // Tag field width parameter TAG_WIDTH = 8, // Operation table size parameter OP_TABLE_SIZE = 2**(AXI_ID_WIDTH < PCIE_TAG_WIDTH ? AXI_ID_WIDTH : PCIE_TAG_WIDTH), // In-flight transmit limit parameter TX_LIMIT = 2**(RQ_SEQ_NUM_WIDTH-1), // Transmit flow control parameter TX_FC_ENABLE = 0 ) ( input wire clk, input wire rst, /* * AXI input (RC) */ input wire [AXIS_PCIE_DATA_WIDTH-1:0] s_axis_rc_tdata, input wire [AXIS_PCIE_KEEP_WIDTH-1:0] s_axis_rc_tkeep, input wire s_axis_rc_tvalid, output wire s_axis_rc_tready, input wire s_axis_rc_tlast, input wire [AXIS_PCIE_RC_USER_WIDTH-1:0] s_axis_rc_tuser, /* * AXI output (RQ) */ output wire [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata, output wire [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep, output wire m_axis_rq_tvalid, input wire m_axis_rq_tready, output wire m_axis_rq_tlast, output wire [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser, /* * Transmit sequence number input */ input wire [RQ_SEQ_NUM_WIDTH-1:0] s_axis_rq_seq_num_0, input wire s_axis_rq_seq_num_valid_0, input wire [RQ_SEQ_NUM_WIDTH-1:0] s_axis_rq_seq_num_1, input wire s_axis_rq_seq_num_valid_1, /* * Transmit flow control */ input wire [7:0] pcie_tx_fc_nph_av, /* * AXI read descriptor input */ input wire [PCIE_ADDR_WIDTH-1:0] s_axis_read_desc_pcie_addr, input wire [AXI_ADDR_WIDTH-1:0] s_axis_read_desc_axi_addr, input wire [LEN_WIDTH-1:0] s_axis_read_desc_len, input wire [TAG_WIDTH-1:0] s_axis_read_desc_tag, input wire s_axis_read_desc_valid, output wire s_axis_read_desc_ready, /* * AXI read descriptor status output */ output wire [TAG_WIDTH-1:0] m_axis_read_desc_status_tag, output wire m_axis_read_desc_status_valid, /* * AXI master interface */ output wire [AXI_ID_WIDTH-1:0] m_axi_awid, output wire [AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [7:0] m_axi_awlen, output wire [2:0] m_axi_awsize, output wire [1:0] m_axi_awburst, output wire m_axi_awlock, output wire [3:0] m_axi_awcache, output wire [2:0] m_axi_awprot, output wire m_axi_awvalid, input wire m_axi_awready, output wire [AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [AXI_STRB_WIDTH-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire m_axi_wvalid, input wire m_axi_wready, input wire [AXI_ID_WIDTH-1:0] m_axi_bid, input wire [1:0] m_axi_bresp, input wire m_axi_bvalid, output wire m_axi_bready, /* * Configuration */ input wire enable, input wire ext_tag_enable, input wire [15:0] requester_id, input wire requester_id_enable, input wire [2:0] max_read_request_size, /* * Status */ output wire status_error_cor, output wire status_error_uncor ); parameter AXI_WORD_WIDTH = AXI_STRB_WIDTH; parameter AXI_WORD_SIZE = AXI_DATA_WIDTH/AXI_WORD_WIDTH; parameter AXI_BURST_SIZE = $clog2(AXI_STRB_WIDTH); parameter AXI_MAX_BURST_SIZE = AXI_MAX_BURST_LEN*AXI_WORD_WIDTH; parameter AXIS_PCIE_WORD_WIDTH = AXIS_PCIE_KEEP_WIDTH; parameter AXIS_PCIE_WORD_SIZE = AXIS_PCIE_DATA_WIDTH/AXIS_PCIE_WORD_WIDTH; parameter OFFSET_WIDTH = $clog2(AXIS_PCIE_DATA_WIDTH/8); parameter CYCLE_COUNT_WIDTH = 13-AXI_BURST_SIZE; parameter OP_TAG_WIDTH = $clog2(OP_TABLE_SIZE); parameter OP_TABLE_READ_COUNT_WIDTH = PCIE_TAG_WIDTH+1; parameter OP_TABLE_WRITE_COUNT_WIDTH = LEN_WIDTH; // bus width assertions initial begin if (AXIS_PCIE_DATA_WIDTH != 64 && AXIS_PCIE_DATA_WIDTH != 128 && AXIS_PCIE_DATA_WIDTH != 256 && AXIS_PCIE_DATA_WIDTH != 512) begin $error("Error: PCIe interface width must be 64, 128, 256, or 512 (instance %m)"); $finish; end if (AXIS_PCIE_KEEP_WIDTH * 32 != AXIS_PCIE_DATA_WIDTH) begin $error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)"); $finish; end if (AXIS_PCIE_DATA_WIDTH == 512) begin if (AXIS_PCIE_RC_USER_WIDTH != 161) begin $error("Error: PCIe RC tuser width must be 161 (instance %m)"); $finish; end if (AXIS_PCIE_RQ_USER_WIDTH != 137) begin $error("Error: PCIe RQ tuser width must be 137 (instance %m)"); $finish; end end else begin if (AXIS_PCIE_RC_USER_WIDTH != 75) begin $error("Error: PCIe RC tuser width must be 75 (instance %m)"); $finish; end if (AXIS_PCIE_RQ_USER_WIDTH != 60 && AXIS_PCIE_RQ_USER_WIDTH != 62) begin $error("Error: PCIe RQ tuser width must be 60 or 62 (instance %m)"); $finish; end end if (AXIS_PCIE_RQ_USER_WIDTH == 60) begin if (RQ_SEQ_NUM_ENABLE && RQ_SEQ_NUM_WIDTH != 4) begin $error("Error: RQ sequence number width must be 4 (instance %m)"); $finish; end if (PCIE_TAG_COUNT > 64) begin $error("Error: PCIe tag count must be no larger than 64 (instance %m)"); $finish; end end else begin if (RQ_SEQ_NUM_ENABLE && RQ_SEQ_NUM_WIDTH != 6) begin $error("Error: RQ sequence number width must be 6 (instance %m)"); $finish; end if (PCIE_TAG_COUNT > 256) begin $error("Error: PCIe tag count must be no larger than 256 (instance %m)"); $finish; end end if (RQ_SEQ_NUM_ENABLE && TX_LIMIT > 2**(RQ_SEQ_NUM_WIDTH-1)) begin $error("Error: TX limit out of range (instance %m)"); $finish; end if (AXI_DATA_WIDTH != AXIS_PCIE_DATA_WIDTH) begin $error("Error: AXI interface width must match PCIe interface width (instance %m)"); $finish; end if (AXI_STRB_WIDTH * 8 != AXI_DATA_WIDTH) begin $error("Error: AXI interface requires byte (8-bit) granularity (instance %m)"); $finish; end if (AXI_MAX_BURST_LEN < 1 || AXI_MAX_BURST_LEN > 256) begin $error("Error: AXI_MAX_BURST_LEN must be between 1 and 256 (instance %m)"); $finish; end if (AXI_ID_WIDTH < OP_TAG_WIDTH) begin $error("Error: AXI_ID_WIDTH must be at least OP_TAG_WIDTH (instance %m)"); $finish; end end localparam [3:0] REQ_MEM_READ = 4'b0000, REQ_MEM_WRITE = 4'b0001, REQ_IO_READ = 4'b0010, REQ_IO_WRITE = 4'b0011, REQ_MEM_FETCH_ADD = 4'b0100, REQ_MEM_SWAP = 4'b0101, REQ_MEM_CAS = 4'b0110, REQ_MEM_READ_LOCKED = 4'b0111, REQ_CFG_READ_0 = 4'b1000, REQ_CFG_READ_1 = 4'b1001, REQ_CFG_WRITE_0 = 4'b1010, REQ_CFG_WRITE_1 = 4'b1011, REQ_MSG = 4'b1100, REQ_MSG_VENDOR = 4'b1101, REQ_MSG_ATS = 4'b1110; localparam [2:0] CPL_STATUS_SC = 3'b000, // successful completion CPL_STATUS_UR = 3'b001, // unsupported request CPL_STATUS_CRS = 3'b010, // configuration request retry status CPL_STATUS_CA = 3'b100; // completer abort localparam [4:0] RC_ERROR_NORMAL_TERMINATION = 4'b0000, RC_ERROR_POISONED = 4'b0001, RC_ERROR_BAD_STATUS = 4'b0010, RC_ERROR_INVALID_LENGTH = 4'b0011, RC_ERROR_MISMATCH = 4'b0100, RC_ERROR_INVALID_ADDRESS = 4'b0101, RC_ERROR_INVALID_TAG = 4'b0110, RC_ERROR_TIMEOUT = 4'b1001, RC_ERROR_FLR = 4'b1000; localparam [1:0] REQ_STATE_IDLE = 2'd0, REQ_STATE_START = 2'd1, REQ_STATE_HEADER = 2'd2; reg [1:0] req_state_reg = REQ_STATE_IDLE, req_state_next; localparam [2:0] TLP_STATE_IDLE = 3'd0, TLP_STATE_HEADER = 3'd1, TLP_STATE_START = 3'd2, TLP_STATE_TRANSFER = 3'd3, TLP_STATE_DROP_TAG = 3'd4, TLP_STATE_WAIT_END = 3'd5; reg [2:0] tlp_state_reg = TLP_STATE_IDLE, tlp_state_next; // datapath control signals reg transfer_in_save; reg tag_table_we_req; reg tlp_cmd_ready; reg finish_tag; reg [3:0] first_be; reg [3:0] last_be; reg [10:0] dword_count; reg req_last_tlp; reg [PCIE_ADDR_WIDTH-1:0] req_pcie_addr; reg [PCIE_ADDR_WIDTH-1:0] req_pcie_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, req_pcie_addr_next; reg [AXI_ADDR_WIDTH-1:0] req_axi_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, req_axi_addr_next; reg [LEN_WIDTH-1:0] req_op_count_reg = {LEN_WIDTH{1'b0}}, req_op_count_next; reg [12:0] req_tlp_count_reg = 13'd0, req_tlp_count_next; reg [11:0] lower_addr_reg = 12'd0, lower_addr_next; reg [12:0] byte_count_reg = 13'd0, byte_count_next; reg [3:0] error_code_reg = 4'd0, error_code_next; reg [AXI_ADDR_WIDTH-1:0] axi_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, axi_addr_next; reg axi_addr_valid_reg = 1'b0, axi_addr_valid_next; reg [9:0] op_dword_count_reg = 10'd0, op_dword_count_next; reg [12:0] op_count_reg = 13'd0, op_count_next; reg [12:0] tr_count_reg = 13'd0, tr_count_next; reg [CYCLE_COUNT_WIDTH-1:0] input_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, input_cycle_count_next; reg [CYCLE_COUNT_WIDTH-1:0] output_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, output_cycle_count_next; reg input_active_reg = 1'b0, input_active_next; reg bubble_cycle_reg = 1'b0, bubble_cycle_next; reg first_cycle_reg = 1'b0, first_cycle_next; reg last_cycle_reg = 1'b0, last_cycle_next; reg [PCIE_TAG_WIDTH-1:0] pcie_tag_reg = {PCIE_TAG_WIDTH{1'b0}}, pcie_tag_next; reg [OP_TAG_WIDTH-1:0] op_tag_reg = {OP_TAG_WIDTH{1'b0}}, op_tag_next; reg final_cpl_reg = 1'b0, final_cpl_next; reg [OFFSET_WIDTH-1:0] offset_reg = {OFFSET_WIDTH{1'b0}}, offset_next; reg [OFFSET_WIDTH-1:0] first_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, first_cycle_offset_next; reg [OFFSET_WIDTH-1:0] last_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, last_cycle_offset_next; reg [AXI_ADDR_WIDTH-1:0] tlp_cmd_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, tlp_cmd_addr_next; reg [OP_TAG_WIDTH-1:0] tlp_cmd_op_tag_reg = {OP_TAG_WIDTH{1'b0}}, tlp_cmd_op_tag_next; reg [TAG_WIDTH-1:0] tlp_cmd_tag_reg = {TAG_WIDTH{1'b0}}, tlp_cmd_tag_next; reg [PCIE_TAG_WIDTH-1:0] tlp_cmd_pcie_tag_reg = {PCIE_TAG_WIDTH{1'b0}}, tlp_cmd_pcie_tag_next; reg tlp_cmd_last_reg = 1'b0, tlp_cmd_last_next; reg tlp_cmd_valid_reg = 1'b0, tlp_cmd_valid_next; reg [AXI_ADDR_WIDTH-1:0] tag_table_axi_addr[(2**PCIE_TAG_WIDTH)-1:0]; reg [OP_TAG_WIDTH-1:0] tag_table_op_tag[(2**PCIE_TAG_WIDTH)-1:0]; reg tag_table_we_tlp_reg = 1'b0, tag_table_we_tlp_next; reg [10:0] max_read_request_size_dw_reg = 11'd0; reg have_credit_reg = 1'b0; reg [RQ_SEQ_NUM_WIDTH-1:0] active_tx_count_reg = {RQ_SEQ_NUM_WIDTH{1'b0}}; reg active_tx_count_av_reg = 1'b1; reg inc_active_tx; reg s_axis_rc_tready_reg = 1'b0, s_axis_rc_tready_next; reg s_axis_read_desc_ready_reg = 1'b0, s_axis_read_desc_ready_next; reg [TAG_WIDTH-1:0] m_axis_read_desc_status_tag_reg = {TAG_WIDTH{1'b0}}, m_axis_read_desc_status_tag_next; reg m_axis_read_desc_status_valid_reg = 1'b0, m_axis_read_desc_status_valid_next; reg [AXI_ID_WIDTH-1:0] m_axi_awid_reg = {AXI_ID_WIDTH{1'b0}}, m_axi_awid_next; reg [AXI_ADDR_WIDTH-1:0] m_axi_awaddr_reg = {AXI_ADDR_WIDTH{1'b0}}, m_axi_awaddr_next; reg [7:0] m_axi_awlen_reg = 8'd0, m_axi_awlen_next; reg m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next; reg m_axi_bready_reg = 1'b0, m_axi_bready_next; reg status_error_cor_reg = 1'b0, status_error_cor_next; reg status_error_uncor_reg = 1'b0, status_error_uncor_next; reg [AXIS_PCIE_DATA_WIDTH-1:0] save_axis_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}}; wire [AXI_DATA_WIDTH-1:0] shift_axis_tdata = {s_axis_rc_tdata, save_axis_tdata_reg} >> ((AXI_STRB_WIDTH-offset_reg)*AXI_WORD_SIZE); // internal datapath reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_int; reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_int; reg m_axis_rq_tvalid_int; reg m_axis_rq_tready_int_reg = 1'b0; reg m_axis_rq_tlast_int; reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser_int; wire m_axis_rq_tready_int_early; reg [AXI_DATA_WIDTH-1:0] m_axi_wdata_int; reg [AXI_STRB_WIDTH-1:0] m_axi_wstrb_int; reg m_axi_wvalid_int; reg m_axi_wready_int_reg = 1'b0; reg m_axi_wlast_int; wire m_axi_wready_int_early; assign s_axis_rc_tready = s_axis_rc_tready_reg; assign s_axis_read_desc_ready = s_axis_read_desc_ready_reg; assign m_axis_read_desc_status_tag = m_axis_read_desc_status_tag_reg; assign m_axis_read_desc_status_valid = m_axis_read_desc_status_valid_reg; assign m_axi_awid = m_axi_awid_reg; assign m_axi_awaddr = m_axi_awaddr_reg; assign m_axi_awlen = m_axi_awlen_reg; assign m_axi_awsize = $clog2(AXI_STRB_WIDTH); assign m_axi_awburst = 2'b01; assign m_axi_awlock = 1'b0; assign m_axi_awcache = 4'b0011; assign m_axi_awprot = 3'b010; assign m_axi_awvalid = m_axi_awvalid_reg; assign m_axi_bready = m_axi_bready_reg; assign status_error_cor = status_error_cor_reg; assign status_error_uncor = status_error_uncor_reg; // PCIe tag management wire [PCIE_TAG_WIDTH-1:0] new_tag; wire new_tag_valid; reg new_tag_ready; wire [PCIE_TAG_COUNT-1:0] active_tags; pcie_tag_manager #( .PCIE_TAG_COUNT(PCIE_TAG_COUNT), .PCIE_TAG_WIDTH(PCIE_TAG_WIDTH), .PCIE_EXT_TAG_ENABLE(PCIE_EXT_TAG_ENABLE) ) pcie_tag_manager_inst ( .clk(clk), .rst(rst), .m_axis_tag(new_tag), .m_axis_tag_valid(new_tag_valid), .m_axis_tag_ready(new_tag_ready), .s_axis_tag(pcie_tag_reg), .s_axis_tag_valid(finish_tag), .ext_tag_enable(ext_tag_enable), .active_tags(active_tags) ); // operation tag management wire [OP_TAG_WIDTH-1:0] op_table_start_ptr; wire op_table_start_ptr_valid; reg [TAG_WIDTH-1:0] op_table_start_tag; reg op_table_start_en; reg [OP_TAG_WIDTH-1:0] op_table_finish_ptr; reg op_table_finish_en; reg [OP_TAG_WIDTH-1:0] op_table_read_start_ptr; reg op_table_read_start_commit; reg op_table_read_start_en; reg [OP_TAG_WIDTH-1:0] op_table_read_finish_ptr; reg op_table_read_finish_en; reg [OP_TAG_WIDTH-1:0] op_table_write_start_ptr; reg op_table_write_start_commit; reg op_table_write_start_en; reg [OP_TAG_WIDTH-1:0] op_table_write_finish_ptr; reg op_table_write_finish_en; reg [2**OP_TAG_WIDTH-1:0] op_table_active = 0; reg [TAG_WIDTH-1:0] op_table_tag [2**OP_TAG_WIDTH-1:0]; reg op_table_init [2**OP_TAG_WIDTH-1:0]; reg op_table_read_init [2**OP_TAG_WIDTH-1:0]; reg op_table_read_commit [2**OP_TAG_WIDTH-1:0]; reg op_table_read_error [2**OP_TAG_WIDTH-1:0]; reg [OP_TABLE_READ_COUNT_WIDTH-1:0] op_table_read_count_start [2**OP_TAG_WIDTH-1:0]; reg [OP_TABLE_READ_COUNT_WIDTH-1:0] op_table_read_count_finish [2**OP_TAG_WIDTH-1:0]; reg op_table_write_init [2**OP_TAG_WIDTH-1:0]; reg op_table_write_commit [2**OP_TAG_WIDTH-1:0]; reg [OP_TABLE_WRITE_COUNT_WIDTH-1:0] op_table_write_count_start [2**OP_TAG_WIDTH-1:0]; reg [OP_TABLE_WRITE_COUNT_WIDTH-1:0] op_table_write_count_finish [2**OP_TAG_WIDTH-1:0]; priority_encoder #( .WIDTH(2**OP_TAG_WIDTH), .LSB_PRIORITY("HIGH") ) op_table_start_ptr_enc_inst ( .input_unencoded(~op_table_active), .output_valid(op_table_start_ptr_valid), .output_encoded(op_table_start_ptr), .output_unencoded() ); integer i; initial begin for (i = 0; i < 2**OP_TAG_WIDTH; i = i + 1) begin op_table_tag[i] = 0; op_table_init[i] = 0; op_table_read_init[i] = 0; op_table_read_commit[i] = 0; op_table_read_count_start[i] = 0; op_table_read_count_finish[i] = 0; op_table_write_init[i] = 0; op_table_write_commit[i] = 0; op_table_write_count_start[i] = 0; op_table_write_count_finish[i] = 0; end for (i = 0; i < 2**PCIE_TAG_WIDTH; i = i + 1) begin tag_table_axi_addr[i] = 0; tag_table_op_tag[i] = 0; end end always @* begin req_state_next = REQ_STATE_IDLE; s_axis_read_desc_ready_next = 1'b0; req_pcie_addr_next = req_pcie_addr_reg; req_axi_addr_next = req_axi_addr_reg; req_op_count_next = req_op_count_reg; req_tlp_count_next = req_tlp_count_reg; tlp_cmd_addr_next = tlp_cmd_addr_reg; tlp_cmd_op_tag_next = tlp_cmd_op_tag_reg; tlp_cmd_tag_next = tlp_cmd_tag_reg; tlp_cmd_pcie_tag_next = tlp_cmd_pcie_tag_reg; tlp_cmd_last_next = tlp_cmd_last_reg; tlp_cmd_valid_next = tlp_cmd_valid_reg && !tlp_cmd_ready; inc_active_tx = 1'b0; m_axis_rq_tdata_int = {AXIS_PCIE_DATA_WIDTH{1'b0}}; m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b0}}; m_axis_rq_tvalid_int = 1'b0; if (AXIS_PCIE_DATA_WIDTH > 64) begin m_axis_rq_tlast_int = 1'b1; end else begin m_axis_rq_tlast_int = 1'b0; end m_axis_rq_tuser_int = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}}; m_axis_rq_tdata_int[1:0] = 2'b0; // address type m_axis_rq_tdata_int[63:2] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:2]; // address if (AXIS_PCIE_DATA_WIDTH > 64) begin m_axis_rq_tdata_int[74:64] = 11'd0; // DWORD count m_axis_rq_tdata_int[78:75] = REQ_MEM_READ; // request type - memory read m_axis_rq_tdata_int[79] = 1'b0; // poisoned request m_axis_rq_tdata_int[95:80] = requester_id; m_axis_rq_tdata_int[103:96] = new_tag; m_axis_rq_tdata_int[119:104] = 16'd0; // completer ID m_axis_rq_tdata_int[120] = requester_id_enable; m_axis_rq_tdata_int[123:121] = 3'b000; // traffic class m_axis_rq_tdata_int[126:124] = 3'b000; // attr m_axis_rq_tdata_int[127] = 1'b0; // force ECRC end if (AXIS_PCIE_DATA_WIDTH == 512) begin m_axis_rq_tkeep_int = 16'b0000000000001111; end else if (AXIS_PCIE_DATA_WIDTH == 256) begin m_axis_rq_tkeep_int = 8'b00001111; end else if (AXIS_PCIE_DATA_WIDTH == 128) begin m_axis_rq_tkeep_int = 4'b1111; end else begin m_axis_rq_tkeep_int = 2'b11; end if (AXIS_PCIE_DATA_WIDTH == 512) begin m_axis_rq_tuser_int[3:0] = 4'd0; // first BE 0 m_axis_rq_tuser_int[7:4] = 4'd0; // first BE 1 m_axis_rq_tuser_int[11:8] = 4'd0; // last BE 0 m_axis_rq_tuser_int[15:12] = 4'd0; // last BE 1 m_axis_rq_tuser_int[19:16] = 3'd0; // addr_offset m_axis_rq_tuser_int[21:20] = 2'b01; // is_sop m_axis_rq_tuser_int[23:22] = 2'd0; // is_sop0_ptr m_axis_rq_tuser_int[25:24] = 2'd0; // is_sop1_ptr m_axis_rq_tuser_int[27:26] = 2'b01; // is_eop m_axis_rq_tuser_int[31:28] = 4'd3; // is_eop0_ptr m_axis_rq_tuser_int[35:32] = 4'd0; // is_eop1_ptr m_axis_rq_tuser_int[36] = 1'b0; // discontinue m_axis_rq_tuser_int[38:37] = 2'b00; // tph_present m_axis_rq_tuser_int[42:39] = 4'b0000; // tph_type m_axis_rq_tuser_int[44:43] = 2'b00; // tph_indirect_tag_en m_axis_rq_tuser_int[60:45] = 16'd0; // tph_st_tag m_axis_rq_tuser_int[66:61] = 6'd0; // seq_num0 m_axis_rq_tuser_int[72:67] = 6'd0; // seq_num1 m_axis_rq_tuser_int[136:73] = 64'd0; // parity end else begin m_axis_rq_tuser_int[3:0] = 4'd0; // first BE m_axis_rq_tuser_int[7:4] = 4'd0; // last BE m_axis_rq_tuser_int[10:8] = 3'd0; // addr_offset m_axis_rq_tuser_int[11] = 1'b0; // discontinue m_axis_rq_tuser_int[12] = 1'b0; // tph_present m_axis_rq_tuser_int[14:13] = 2'b00; // tph_type m_axis_rq_tuser_int[15] = 1'b0; // tph_indirect_tag_en m_axis_rq_tuser_int[23:16] = 8'd0; // tph_st_tag m_axis_rq_tuser_int[27:24] = 4'd0; // seq_num m_axis_rq_tuser_int[59:28] = 32'd0; // parity if (AXIS_PCIE_RQ_USER_WIDTH == 62) begin m_axis_rq_tuser_int[61:60] = 2'd0; // seq_num end end new_tag_ready = 1'b0; op_table_start_tag = s_axis_read_desc_tag; op_table_start_en = 1'b0; op_table_read_start_ptr = tlp_cmd_op_tag_reg; op_table_read_start_commit = 1'b0; op_table_read_start_en = 1'b0; // TLP size computation if (req_op_count_reg + req_pcie_addr_reg[1:0] <= {max_read_request_size_dw_reg, 2'b00}) begin // packet smaller than max read request size if (((req_pcie_addr_reg & 12'hfff) + (req_op_count_reg & 12'hfff)) >> 12 != 0 || req_op_count_reg >> 12 != 0) begin // crosses 4k boundary req_tlp_count_next = 13'h1000 - req_pcie_addr_reg[11:0]; dword_count = 11'h400 - req_pcie_addr_reg[11:2]; req_last_tlp = (((req_pcie_addr_reg & 12'hfff) + (req_op_count_reg & 12'hfff)) & 12'hfff) == 0; // optimized req_pcie_addr = req_addr_reg + req_tlp_count_next req_pcie_addr[PCIE_ADDR_WIDTH-1:12] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:12]+1; req_pcie_addr[11:0] = 12'd0; end else begin // does not cross 4k boundary, send one TLP req_tlp_count_next = req_op_count_reg; dword_count = (req_op_count_reg + req_pcie_addr_reg[1:0] + 3) >> 2; req_last_tlp = 1'b1; // optimized req_pcie_addr = req_addr_reg + req_tlp_count_next req_pcie_addr[PCIE_ADDR_WIDTH-1:12] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:12]; req_pcie_addr[11:0] = req_pcie_addr_reg[11:0] + req_op_count_reg; end end else begin // packet larger than max read request size if (((req_pcie_addr_reg & 12'hfff) + {max_read_request_size_dw_reg, 2'b00}) >> 12 != 0) begin // crosses 4k boundary req_tlp_count_next = 13'h1000 - req_pcie_addr_reg[11:0]; dword_count = 11'h400 - req_pcie_addr_reg[11:2]; req_last_tlp = 1'b0; // optimized req_pcie_addr = req_addr_reg + req_tlp_count_next req_pcie_addr[PCIE_ADDR_WIDTH-1:12] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:12]+1; req_pcie_addr[11:0] = 12'd0; end else begin // does not cross 4k boundary, send one TLP req_tlp_count_next = {max_read_request_size_dw_reg, 2'b00}-req_pcie_addr_reg[1:0]; dword_count = max_read_request_size_dw_reg; req_last_tlp = 1'b0; // optimized req_pcie_addr = req_addr_reg + req_tlp_count_next req_pcie_addr[PCIE_ADDR_WIDTH-1:12] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:12]; req_pcie_addr[11:0] = {req_pcie_addr_reg[11:2] + max_read_request_size_dw_reg, 2'b00}; end end first_be = 4'b1111 << req_pcie_addr_reg[1:0]; last_be = 4'b1111 >> (3 - ((req_pcie_addr_reg[1:0] + req_tlp_count_next[1:0] - 1) & 3)); if (AXIS_PCIE_DATA_WIDTH > 64) begin m_axis_rq_tdata_int[74:64] = dword_count; // DWORD count end if (AXIS_PCIE_DATA_WIDTH == 512) begin m_axis_rq_tuser_int[3:0] = dword_count == 1 ? first_be & last_be : first_be; // first BE 0 m_axis_rq_tuser_int[7:4] = 4'd0; // first BE 1 m_axis_rq_tuser_int[11:8] = dword_count == 1 ? 4'b0000 : last_be; // last BE 0 m_axis_rq_tuser_int[15:12] = 4'd0; // last BE 1 end else begin m_axis_rq_tuser_int[3:0] = dword_count == 1 ? first_be & last_be : first_be; // first BE m_axis_rq_tuser_int[7:4] = dword_count == 1 ? 4'b0000 : last_be; // last BE end // TLP segmentation and request generation case (req_state_reg) REQ_STATE_IDLE: begin s_axis_read_desc_ready_next = enable && !tlp_cmd_valid_reg && op_table_start_ptr_valid; if (s_axis_read_desc_ready && s_axis_read_desc_valid) begin s_axis_read_desc_ready_next = 1'b0; req_pcie_addr_next = s_axis_read_desc_pcie_addr; req_axi_addr_next = s_axis_read_desc_axi_addr; req_op_count_next = s_axis_read_desc_len; tlp_cmd_tag_next = s_axis_read_desc_tag; tlp_cmd_op_tag_next = op_table_start_ptr; op_table_start_tag = s_axis_read_desc_tag; op_table_start_en = 1'b1; req_state_next = REQ_STATE_START; end else begin req_state_next = REQ_STATE_IDLE; end end REQ_STATE_START: begin if (m_axis_rq_tready_int_reg && !tlp_cmd_valid_reg && new_tag_valid && (!TX_FC_ENABLE || have_credit_reg) && (!RQ_SEQ_NUM_ENABLE || active_tx_count_av_reg)) begin m_axis_rq_tvalid_int = 1'b1; inc_active_tx = 1'b1; if (AXIS_PCIE_DATA_WIDTH > 64) begin req_pcie_addr_next = req_pcie_addr; req_axi_addr_next = req_axi_addr_reg + req_tlp_count_next; req_op_count_next = req_op_count_reg - req_tlp_count_next; new_tag_ready = 1'b1; tlp_cmd_addr_next = req_axi_addr_reg; tlp_cmd_pcie_tag_next = new_tag; tlp_cmd_last_next = req_last_tlp; tlp_cmd_valid_next = 1'b1; op_table_read_start_ptr = tlp_cmd_op_tag_reg; op_table_read_start_commit = req_last_tlp; op_table_read_start_en = 1'b1; if (!req_last_tlp) begin req_state_next = REQ_STATE_START; end else begin s_axis_read_desc_ready_next = 1'b0; req_state_next = REQ_STATE_IDLE; end end else begin req_state_next = REQ_STATE_HEADER; end end else begin req_state_next = REQ_STATE_START; end end REQ_STATE_HEADER: begin if (m_axis_rq_tready_int_reg && !tlp_cmd_valid_reg && new_tag_valid) begin req_pcie_addr_next = req_pcie_addr; req_axi_addr_next = req_axi_addr_reg + req_tlp_count_next; req_op_count_next = req_op_count_reg - req_tlp_count_next; new_tag_ready = 1'b1; m_axis_rq_tdata_int[10:0] = dword_count; // DWORD count m_axis_rq_tdata_int[14:11] = REQ_MEM_READ; // request type - memory read m_axis_rq_tdata_int[15] = 1'b0; // poisoned request m_axis_rq_tdata_int[31:16] = requester_id; m_axis_rq_tdata_int[40:32] = new_tag; m_axis_rq_tdata_int[55:41] = 16'd0; // completer ID m_axis_rq_tdata_int[56] = requester_id_enable; m_axis_rq_tdata_int[59:57] = 3'b000; // traffic class m_axis_rq_tdata_int[62:60] = 3'b000; // attr m_axis_rq_tdata_int[63] = 1'b0; // force ECRC m_axis_rq_tlast_int = 1'b1; m_axis_rq_tvalid_int = 1'b1; tlp_cmd_addr_next = req_axi_addr_reg; tlp_cmd_pcie_tag_next = new_tag; tlp_cmd_last_next = req_last_tlp; tlp_cmd_valid_next = 1'b1; op_table_read_start_ptr = tlp_cmd_op_tag_reg; op_table_read_start_commit = req_last_tlp; op_table_read_start_en = 1'b1; if (!req_last_tlp) begin req_state_next = REQ_STATE_START; end else begin s_axis_read_desc_ready_next = 1'b0; req_state_next = REQ_STATE_IDLE; end end else begin req_state_next = REQ_STATE_HEADER; end end endcase end always @* begin tlp_state_next = TLP_STATE_IDLE; transfer_in_save = 1'b0; finish_tag = 1'b0; tag_table_we_tlp_next = 1'b0; s_axis_rc_tready_next = 1'b0; m_axis_read_desc_status_tag_next = m_axis_read_desc_status_tag_reg; m_axis_read_desc_status_valid_next = 1'b0; lower_addr_next = lower_addr_reg; byte_count_next = byte_count_reg; error_code_next = error_code_reg; axi_addr_next = axi_addr_reg; axi_addr_valid_next = axi_addr_valid_reg; op_count_next = op_count_reg; tr_count_next = tr_count_reg; op_dword_count_next = op_dword_count_reg; input_cycle_count_next = input_cycle_count_reg; output_cycle_count_next = output_cycle_count_reg; input_active_next = input_active_reg; bubble_cycle_next = bubble_cycle_reg; first_cycle_next = first_cycle_reg; last_cycle_next = last_cycle_reg; pcie_tag_next = pcie_tag_reg; op_tag_next = op_tag_reg; final_cpl_next = final_cpl_reg; offset_next = offset_reg; first_cycle_offset_next = first_cycle_offset_reg; last_cycle_offset_next = last_cycle_offset_reg; m_axi_awid_next = m_axi_awid_reg; m_axi_awaddr_next = m_axi_awaddr_reg; m_axi_awlen_next = m_axi_awlen_reg; m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_awready; m_axi_bready_next = 1'b0; m_axi_wdata_int = shift_axis_tdata; m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}}; m_axi_wvalid_int = 1'b0; m_axi_wlast_int = 1'b0; status_error_cor_next = 1'b0; status_error_uncor_next = 1'b0; op_table_finish_ptr = m_axi_bid; op_table_finish_en = 1'b0; op_table_read_finish_ptr = op_tag_reg; op_table_read_finish_en = 1'b0; op_table_write_start_ptr = op_tag_reg; op_table_write_start_commit = 1'b0; op_table_write_start_en = 1'b0; op_table_write_finish_ptr = m_axi_bid; op_table_write_finish_en = 1'b0; // TLP response handling and AXI operation generation case (tlp_state_reg) TLP_STATE_IDLE: begin // idle state, wait for completion if (AXIS_PCIE_DATA_WIDTH > 64) begin s_axis_rc_tready_next = 1'b0; if (s_axis_rc_tvalid) begin // header fields lower_addr_next = s_axis_rc_tdata[11:0]; // lower address error_code_next = s_axis_rc_tdata[15:12]; // error code byte_count_next = s_axis_rc_tdata[28:16]; // byte count //s_axis_rc_tdata[29]; // locked read //s_axis_rc_tdata[30]; // request completed op_dword_count_next = s_axis_rc_tdata[42:32]; // DWORD count //s_axis_rc_tdata[45:43]; // completion status //s_axis_rc_tdata[46]; // poisoned completion //s_axis_rc_tdata[63:48]; // requester ID pcie_tag_next = s_axis_rc_tdata[71:64]; // tag //s_axis_rc_tdata[87:72]; // completer ID //s_axis_rc_tdata[91:89]; // attr //s_axis_rc_tdata[94:92]; // tc // tuser fields //s_axis_rc_tuser[31:0]; // byte enables //s_axis_rc_tuser[32]; // is_sof_0 //s_axis_rc_tuser[33]; // is_sof_1 //s_axis_rc_tuser[37:34]; // is_eof_0 //s_axis_rc_tuser[41:38]; // is_eof_1 //s_axis_rc_tuser[42]; // discontinue //s_axis_rc_tuser[74:43]; // parity if (byte_count_next > (op_dword_count_next << 2) - lower_addr_next[1:0]) begin // more completions to follow op_count_next = (op_dword_count_next << 2) - lower_addr_next[1:0]; final_cpl_next = 1'b0; end else begin // last completion op_count_next = byte_count_next; final_cpl_next = 1'b1; end if (!axi_addr_valid_reg || pcie_tag_reg != pcie_tag_next) begin // current AXI address not valid, so read it from table axi_addr_next = tag_table_axi_addr[pcie_tag_next]; end offset_next = axi_addr_next[OFFSET_WIDTH-1:0] - (12+lower_addr_next[1:0]); bubble_cycle_next = axi_addr_next[OFFSET_WIDTH-1:0] < 12+lower_addr_next[1:0]; first_cycle_offset_next = axi_addr_next[OFFSET_WIDTH-1:0]; first_cycle_next = 1'b1; // AXI transfer size computation if (op_count_next <= AXI_MAX_BURST_SIZE-axi_addr_next[OFFSET_WIDTH-1:0] || AXI_MAX_BURST_SIZE >= 4096) begin // packet smaller than max burst size if ((axi_addr_next ^ (axi_addr_next + op_count_next)) & (1 << 12)) begin // crosses 4k boundary tr_count_next = 13'h1000 - axi_addr_next[11:0]; end else begin // does not cross 4k boundary, send one request tr_count_next = op_count_next; end end else begin // packet larger than max burst size if ((axi_addr_next ^ (axi_addr_next + AXI_MAX_BURST_SIZE)) & (1 << 12)) begin // crosses 4k boundary tr_count_next = 13'h1000 - axi_addr_next[11:0]; end else begin // does not cross 4k boundary, send one request tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_next[OFFSET_WIDTH-1:0]; end end op_tag_next = tag_table_op_tag[pcie_tag_next]; if (active_tags[pcie_tag_next] && error_code_next == RC_ERROR_NORMAL_TERMINATION) begin // no error axi_addr_valid_next = !final_cpl_next; s_axis_rc_tready_next = !m_axi_awvalid || m_axi_awready; tlp_state_next = TLP_STATE_START; end else if (error_code_next == RC_ERROR_MISMATCH) begin // mismatched fields // Handle as malformed TLP (2.3.2) // drop TLP and report uncorrectable error status_error_uncor_next = 1'b1; axi_addr_valid_next = 1'b0; s_axis_rc_tready_next = 1'b1; tlp_state_next = TLP_STATE_WAIT_END; end else if (!active_tags[pcie_tag_next] || error_code_next == RC_ERROR_INVALID_TAG) begin // invalid tag // Handle as unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5) // drop TLP and report correctable error status_error_cor_next = 1'b1; axi_addr_valid_next = 1'b0; s_axis_rc_tready_next = 1'b1; tlp_state_next = TLP_STATE_WAIT_END; end else begin // request terminated by other error (tag valid) // report error case (error_code_next) RC_ERROR_POISONED: status_error_cor_next = 1'b1; // advisory non-fatal (6.2.3.2.4.3) RC_ERROR_BAD_STATUS: status_error_cor_next = 1'b1; // advisory non-fatal (6.2.3.2.4.1) RC_ERROR_INVALID_LENGTH: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5) RC_ERROR_MISMATCH: status_error_uncor_next = 1'b1; // malformed TLP (2.3.2) RC_ERROR_INVALID_ADDRESS: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5) RC_ERROR_INVALID_TAG: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5) RC_ERROR_TIMEOUT: status_error_uncor_next = 1'b1; // uncorrectable (6.2.3.2.4.4) RC_ERROR_FLR: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5) default: status_error_uncor_next = 1'b1; endcase // last request in current transfer axi_addr_valid_next = 1'b0; // drop TLP s_axis_rc_tready_next = 1'b1; tlp_state_next = TLP_STATE_DROP_TAG; end end else begin s_axis_rc_tready_next = 1'b0; tlp_state_next = TLP_STATE_IDLE; end end else begin s_axis_rc_tready_next = 1'b1; if (s_axis_rc_tready && s_axis_rc_tvalid) begin // header fields lower_addr_next = s_axis_rc_tdata[11:0]; // lower address error_code_next = s_axis_rc_tdata[15:12]; // error code byte_count_next = s_axis_rc_tdata[28:16]; // byte count //s_axis_rc_tdata[29]; // locked read //s_axis_rc_tdata[30]; // request completed op_dword_count_next = s_axis_rc_tdata[42:32]; // DWORD count //s_axis_rc_tdata[45:43]; // completion status //s_axis_rc_tdata[46]; // poisoned completion //s_axis_rc_tdata[63:48]; // requester ID // tuser fields //s_axis_rc_tuser[31:0]; // byte enables //s_axis_rc_tuser[32]; // is_sof_0 //s_axis_rc_tuser[33]; // is_sof_1 //s_axis_rc_tuser[37:34]; // is_eof_0 //s_axis_rc_tuser[41:38]; // is_eof_1 //s_axis_rc_tuser[42]; // discontinue //s_axis_rc_tuser[74:43]; // parity if (byte_count_next > (op_dword_count_next << 2) - lower_addr_next[1:0]) begin // more completions to follow op_count_next = (op_dword_count_next << 2) - lower_addr_next[1:0]; final_cpl_next = 1'b0; end else begin // last completion op_count_next = byte_count_next; final_cpl_next = 1'b1; end if (s_axis_rc_tlast) begin s_axis_rc_tready_next = 1'b1; tlp_state_next = TLP_STATE_IDLE; end else begin s_axis_rc_tready_next = 1'b0; tlp_state_next = TLP_STATE_HEADER; end end else begin s_axis_rc_tready_next = 1'b1; tlp_state_next = TLP_STATE_IDLE; end end end TLP_STATE_HEADER: begin // header state; process header (64 bit interface only) s_axis_rc_tready_next = 1'b0; if (s_axis_rc_tvalid) begin pcie_tag_next = s_axis_rc_tdata[7:0]; // tag //s_axis_rc_tdata[23:8]; // completer ID //s_axis_rc_tdata[27:25]; // attr //s_axis_rc_tdata[30:28]; // tc if (!axi_addr_valid_reg || pcie_tag_reg != pcie_tag_next) begin // current AXI address not valid, so read it from table axi_addr_next = tag_table_axi_addr[pcie_tag_next]; end offset_next = axi_addr_next[OFFSET_WIDTH-1:0] - (4+lower_addr_reg[1:0]); bubble_cycle_next = axi_addr_next[OFFSET_WIDTH-1:0] < 4+lower_addr_reg[1:0]; first_cycle_offset_next = axi_addr_next[OFFSET_WIDTH-1:0]; first_cycle_next = 1'b1; // AXI transfer size computation if (op_count_next <= AXI_MAX_BURST_SIZE-axi_addr_next[OFFSET_WIDTH-1:0] || AXI_MAX_BURST_SIZE >= 4096) begin // packet smaller than max burst size if ((axi_addr_next ^ (axi_addr_next + op_count_next)) & (1 << 12)) begin // crosses 4k boundary tr_count_next = 13'h1000 - axi_addr_next[11:0]; end else begin // does not cross 4k boundary, send one request tr_count_next = op_count_next; end end else begin // packet larger than max burst size if ((axi_addr_next ^ (axi_addr_next + AXI_MAX_BURST_SIZE)) & (1 << 12)) begin // crosses 4k boundary tr_count_next = 13'h1000 - axi_addr_next[11:0]; end else begin // does not cross 4k boundary, send one request tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_next[OFFSET_WIDTH-1:0]; end end op_tag_next = tag_table_op_tag[pcie_tag_next]; if (active_tags[pcie_tag_next] && error_code_reg == RC_ERROR_NORMAL_TERMINATION) begin // no error axi_addr_valid_next = !final_cpl_next; s_axis_rc_tready_next = !m_axi_awvalid || m_axi_awready; tlp_state_next = TLP_STATE_START; end else if (error_code_next == RC_ERROR_MISMATCH) begin // mismatched fields // Handle as malformed TLP (2.3.2) // drop TLP and report uncorrectable error status_error_uncor_next = 1'b1; axi_addr_valid_next = 1'b0; s_axis_rc_tready_next = 1'b1; tlp_state_next = TLP_STATE_WAIT_END; end else if (!active_tags[pcie_tag_next] || error_code_next == RC_ERROR_INVALID_TAG) begin // invalid tag or mismatched fields (tag invalid) // Handle as unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5) // drop TLP and report correctable error status_error_cor_next = 1'b1; axi_addr_valid_next = 1'b0; s_axis_rc_tready_next = 1'b1; tlp_state_next = TLP_STATE_WAIT_END; end else begin // request terminated by other error (tag valid) // report error case (error_code_next) RC_ERROR_POISONED: status_error_cor_next = 1'b1; // advisory non-fatal (6.2.3.2.4.3) RC_ERROR_BAD_STATUS: status_error_cor_next = 1'b1; // advisory non-fatal (6.2.3.2.4.1) RC_ERROR_INVALID_LENGTH: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5) RC_ERROR_MISMATCH: status_error_uncor_next = 1'b1; // malformed TLP (2.3.2) RC_ERROR_INVALID_ADDRESS: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5) RC_ERROR_INVALID_TAG: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5) RC_ERROR_TIMEOUT: status_error_uncor_next = 1'b1; // uncorrectable (6.2.3.2.4.4) RC_ERROR_FLR: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5) default: status_error_uncor_next = 1'b1; endcase // last request in current transfer axi_addr_valid_next = 1'b0; // drop TLP s_axis_rc_tready_next = 1'b1; tlp_state_next = TLP_STATE_DROP_TAG; end end else begin tlp_state_next = TLP_STATE_HEADER; end end TLP_STATE_START: begin s_axis_rc_tready_next = !m_axi_awvalid || m_axi_awready; if (s_axis_rc_tready && s_axis_rc_tvalid) begin transfer_in_save = 1'b1; if (AXIS_PCIE_DATA_WIDTH == 64) begin input_cycle_count_next = (tr_count_next + 4+lower_addr_reg[1:0] - 1) >> (AXI_BURST_SIZE); end else begin input_cycle_count_next = (tr_count_next + 12+lower_addr_reg[1:0] - 1) >> (AXI_BURST_SIZE); end output_cycle_count_next = (tr_count_next + axi_addr_reg[OFFSET_WIDTH-1:0] - 1) >> (AXI_BURST_SIZE); last_cycle_offset_next = axi_addr_reg[OFFSET_WIDTH-1:0] + tr_count_next; last_cycle_next = output_cycle_count_next == 0; input_active_next = 1'b1; m_axi_awid_next = op_tag_reg; m_axi_awaddr_next = axi_addr_reg; m_axi_awlen_next = output_cycle_count_next; m_axi_awvalid_next = 1'b1; axi_addr_next = axi_addr_reg + tr_count_next; op_count_next = op_count_reg - tr_count_next; // AXI transfer size computation if (op_count_next <= AXI_MAX_BURST_SIZE-axi_addr_next[OFFSET_WIDTH-1:0] || AXI_MAX_BURST_SIZE >= 4096) begin // packet smaller than max burst size if (((axi_addr_next & 12'hfff) + (op_count_next & 12'hfff)) >> 12 != 0 || op_count_next >> 12 != 0) begin // crosses 4k boundary tr_count_next = 13'h1000 - axi_addr_next[11:0]; end else begin // does not cross 4k boundary, send one request tr_count_next = op_count_next; end end else begin // packet larger than max burst size if (((axi_addr_next & 12'hfff) + AXI_MAX_BURST_SIZE) >> 12 != 0) begin // crosses 4k boundary tr_count_next = 13'h1000 - axi_addr_next[11:0]; end else begin // does not cross 4k boundary, send one request tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_next[OFFSET_WIDTH-1:0]; end end op_table_write_start_ptr = op_tag_reg; op_table_write_start_commit = op_count_next == 0 && final_cpl_reg && op_table_read_commit[op_table_write_start_ptr] && (op_table_read_count_start[op_table_write_start_ptr] == op_table_read_count_finish[op_table_write_start_ptr]); op_table_write_start_en = 1'b1; input_active_next = input_cycle_count_next != 0; input_cycle_count_next = input_cycle_count_next - 1; s_axis_rc_tready_next = m_axi_wready_int_early && input_active_next && bubble_cycle_reg && (!last_cycle_next || op_count_next == 0 || !m_axi_awvalid || m_axi_awready); tlp_state_next = TLP_STATE_TRANSFER; end else begin tlp_state_next = TLP_STATE_START; end end TLP_STATE_TRANSFER: begin s_axis_rc_tready_next = m_axi_wready_int_early && input_active_reg && !(first_cycle_reg && !bubble_cycle_reg) && (!last_cycle_reg || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready); if (m_axi_wready_int_reg && ((s_axis_rc_tready && s_axis_rc_tvalid) || !input_active_reg || (first_cycle_reg && !bubble_cycle_reg)) && (!last_cycle_reg || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready)) begin transfer_in_save = s_axis_rc_tready && s_axis_rc_tvalid; if (first_cycle_reg && !bubble_cycle_reg) begin m_axi_wdata_int = {save_axis_tdata_reg, {AXIS_PCIE_DATA_WIDTH{1'b0}}} >> ((AXI_STRB_WIDTH-offset_reg)*8); end else begin m_axi_wdata_int = shift_axis_tdata; end if (first_cycle_reg) begin m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}} << first_cycle_offset_reg; end else begin m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}}; end if (input_active_reg && !(first_cycle_reg && !bubble_cycle_reg)) begin input_cycle_count_next = input_cycle_count_reg - 1; input_active_next = input_cycle_count_reg != 0; end output_cycle_count_next = output_cycle_count_reg - 1; last_cycle_next = output_cycle_count_next == 0; if (last_cycle_reg) begin if (last_cycle_offset_reg != 0 && op_count_reg == 0) begin m_axi_wstrb_int = m_axi_wstrb_int & {AXI_STRB_WIDTH{1'b1}} >> (AXI_STRB_WIDTH-last_cycle_offset_reg); end m_axi_wlast_int = 1'b1; end m_axi_wvalid_int = 1'b1; first_cycle_next = 1'b0; if (!last_cycle_reg) begin // current transfer not finished yet s_axis_rc_tready_next = m_axi_wready_int_early && input_active_next && (!last_cycle_next || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready); tlp_state_next = TLP_STATE_TRANSFER; end else if (op_count_reg != 0) begin // current transfer done, but operation not finished yet // keep offset, no bubble cycles, not first cycle bubble_cycle_next = 1'b0; first_cycle_next = 1'b0; input_cycle_count_next = (tr_count_next - offset_reg - 1) >> (AXI_BURST_SIZE); output_cycle_count_next = (tr_count_next + axi_addr_reg[OFFSET_WIDTH-1:0] - 1) >> (AXI_BURST_SIZE); last_cycle_offset_next = axi_addr_reg[OFFSET_WIDTH-1:0] + tr_count_next; last_cycle_next = output_cycle_count_next == 0; input_active_next = tr_count_next > offset_reg; m_axi_awaddr_next = axi_addr_reg; m_axi_awlen_next = output_cycle_count_next; m_axi_awvalid_next = 1'b1; axi_addr_next = axi_addr_reg + tr_count_next; op_count_next = op_count_reg - tr_count_next; // AXI transfer size computation if (op_count_next <= AXI_MAX_BURST_SIZE-axi_addr_next[OFFSET_WIDTH-1:0] || AXI_MAX_BURST_SIZE >= 4096) begin // packet smaller than max burst size if (((axi_addr_next & 12'hfff) + (op_count_next & 12'hfff)) >> 12 != 0 || op_count_next >> 12 != 0) begin // crosses 4k boundary tr_count_next = 13'h1000 - axi_addr_next[11:0]; end else begin // does not cross 4k boundary, send one request tr_count_next = op_count_next; end end else begin // packet larger than max burst size if (((axi_addr_next & 12'hfff) + AXI_MAX_BURST_SIZE) >> 12 != 0) begin // crosses 4k boundary tr_count_next = 13'h1000 - axi_addr_next[11:0]; end else begin // does not cross 4k boundary, send one request tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_next[OFFSET_WIDTH-1:0]; end end op_table_write_start_ptr = op_tag_reg; op_table_write_start_commit = op_count_next == 0 && final_cpl_reg && op_table_read_commit[op_table_write_start_ptr] && (op_table_read_count_start[op_table_write_start_ptr] == op_table_read_count_finish[op_table_write_start_ptr]); op_table_write_start_en = 1'b1; s_axis_rc_tready_next = m_axi_wready_int_early && input_active_next && (!last_cycle_next || op_count_next == 0 || !m_axi_awvalid || m_axi_awready); tlp_state_next = TLP_STATE_TRANSFER; end else begin if (final_cpl_reg) begin // last completion in current read request (PCIe tag) finish_tag = 1'b1; // release tag // mark done op_table_read_finish_ptr = op_tag_reg; op_table_read_finish_en = 1'b1; end else begin // more completions to come, store current address tag_table_we_tlp_next = 1'b1; end if (AXIS_PCIE_DATA_WIDTH > 64) begin s_axis_rc_tready_next = 1'b0; end else begin s_axis_rc_tready_next = 1'b1; end tlp_state_next = TLP_STATE_IDLE; end end else begin tlp_state_next = TLP_STATE_TRANSFER; end end TLP_STATE_DROP_TAG: begin // drop tag and TLP s_axis_rc_tready_next = 1'b1; // release tag finish_tag = 1'b1; // mark done op_table_read_finish_ptr = op_tag_reg; op_table_read_finish_en = 1'b1; // commit writes if we're done op_table_write_start_ptr = op_tag_reg; op_table_write_start_commit = op_table_read_commit[op_table_write_start_ptr] && (op_table_read_count_start[op_table_write_start_ptr] == op_table_read_count_finish[op_table_write_start_ptr]); if (s_axis_rc_tready & s_axis_rc_tvalid) begin if (s_axis_rc_tlast) begin if (AXIS_PCIE_DATA_WIDTH > 64) begin s_axis_rc_tready_next = 1'b0; end else begin s_axis_rc_tready_next = 1'b1; end tlp_state_next = TLP_STATE_IDLE; end else begin tlp_state_next = TLP_STATE_WAIT_END; end end else begin tlp_state_next = TLP_STATE_WAIT_END; end end TLP_STATE_WAIT_END: begin // wait end state, wait for end of TLP s_axis_rc_tready_next = 1'b1; if (s_axis_rc_tready & s_axis_rc_tvalid) begin if (s_axis_rc_tlast) begin if (AXIS_PCIE_DATA_WIDTH > 64) begin s_axis_rc_tready_next = 1'b0; end else begin s_axis_rc_tready_next = 1'b1; end tlp_state_next = TLP_STATE_IDLE; end else begin tlp_state_next = TLP_STATE_WAIT_END; end end else begin tlp_state_next = TLP_STATE_WAIT_END; end end endcase m_axi_bready_next = op_table_active != 0; if (m_axi_bready && m_axi_bvalid) begin op_table_finish_ptr = m_axi_bid; op_table_write_finish_ptr = m_axi_bid; op_table_write_finish_en = 1'b1; m_axis_read_desc_status_tag_next = op_table_tag[op_table_write_finish_ptr]; if (op_table_write_commit[op_table_write_finish_ptr] && (op_table_write_count_start[op_table_write_finish_ptr] == op_table_write_count_finish[op_table_write_finish_ptr])) begin op_table_finish_en = 1'b1; m_axis_read_desc_status_valid_next = 1'b1; end end end always @* begin tag_table_we_req = 1'b0; tlp_cmd_ready = 1'b0; // tag table write management if (tag_table_we_tlp_reg) begin end else if (tlp_cmd_valid_reg) begin tlp_cmd_ready = 1'b1; tag_table_we_req = 1'b1; end end always @(posedge clk) begin req_state_reg <= req_state_next; tlp_state_reg <= tlp_state_next; status_error_cor_reg <= status_error_cor_next; status_error_uncor_reg <= status_error_uncor_next; req_pcie_addr_reg <= req_pcie_addr_next; req_axi_addr_reg <= req_axi_addr_next; req_op_count_reg <= req_op_count_next; req_tlp_count_reg <= req_tlp_count_next; lower_addr_reg <= lower_addr_next; byte_count_reg <= byte_count_next; error_code_reg <= error_code_next; axi_addr_reg <= axi_addr_next; axi_addr_valid_reg <= axi_addr_valid_next; op_count_reg <= op_count_next; tr_count_reg <= tr_count_next; op_dword_count_reg <= op_dword_count_next; input_cycle_count_reg <= input_cycle_count_next; output_cycle_count_reg <= output_cycle_count_next; input_active_reg <= input_active_next; bubble_cycle_reg <= bubble_cycle_next; first_cycle_reg <= first_cycle_next; last_cycle_reg <= last_cycle_next; pcie_tag_reg <= pcie_tag_next; op_tag_reg <= op_tag_next; final_cpl_reg <= final_cpl_next; offset_reg <= offset_next; first_cycle_offset_reg <= first_cycle_offset_next; last_cycle_offset_reg <= last_cycle_offset_next; tlp_cmd_addr_reg <= tlp_cmd_addr_next; tlp_cmd_op_tag_reg <= tlp_cmd_op_tag_next; tlp_cmd_tag_reg <= tlp_cmd_tag_next; tlp_cmd_pcie_tag_reg <= tlp_cmd_pcie_tag_next; tlp_cmd_last_reg <= tlp_cmd_last_next; tlp_cmd_valid_reg <= tlp_cmd_valid_next; s_axis_rc_tready_reg <= s_axis_rc_tready_next; s_axis_read_desc_ready_reg <= s_axis_read_desc_ready_next; m_axis_read_desc_status_tag_reg <= m_axis_read_desc_status_tag_next; m_axis_read_desc_status_valid_reg <= m_axis_read_desc_status_valid_next; m_axi_awid_reg <= m_axi_awid_next; m_axi_awaddr_reg <= m_axi_awaddr_next; m_axi_awlen_reg <= m_axi_awlen_next; m_axi_awvalid_reg <= m_axi_awvalid_next; m_axi_bready_reg <= m_axi_bready_next; max_read_request_size_dw_reg <= 11'd32 << (max_read_request_size > 5 ? 5 : max_read_request_size); have_credit_reg <= pcie_tx_fc_nph_av > 4; if (inc_active_tx && !s_axis_rq_seq_num_valid_0 && !s_axis_rq_seq_num_valid_1) begin // inc by 1 active_tx_count_reg <= active_tx_count_reg + 1; active_tx_count_av_reg <= active_tx_count_reg < (TX_LIMIT-1); end else if ((inc_active_tx && s_axis_rq_seq_num_valid_0 && s_axis_rq_seq_num_valid_1) || (!inc_active_tx && (s_axis_rq_seq_num_valid_0 ^ s_axis_rq_seq_num_valid_1))) begin // dec by 1 active_tx_count_reg <= active_tx_count_reg - 1; active_tx_count_av_reg <= 1'b1; end else if (!inc_active_tx && s_axis_rq_seq_num_valid_0 && s_axis_rq_seq_num_valid_1) begin // dec by 2 active_tx_count_reg <= active_tx_count_reg - 2; active_tx_count_av_reg <= 1'b1; end else begin active_tx_count_av_reg <= active_tx_count_reg < TX_LIMIT; end if (transfer_in_save) begin save_axis_tdata_reg <= s_axis_rc_tdata; end tag_table_we_tlp_reg <= tag_table_we_tlp_next; if (tag_table_we_tlp_reg) begin tag_table_axi_addr[pcie_tag_reg] <= axi_addr_reg; end else if (tlp_cmd_valid_reg && tag_table_we_req) begin tag_table_axi_addr[tlp_cmd_pcie_tag_reg] <= tlp_cmd_addr_reg; tag_table_op_tag[tlp_cmd_pcie_tag_reg] <= tlp_cmd_op_tag_reg; end if (op_table_start_en) begin op_table_active[op_table_start_ptr] <= 1'b1; op_table_tag[op_table_start_ptr] <= op_table_start_tag; op_table_init[op_table_start_ptr] <= !op_table_init[op_table_start_ptr]; end if (op_table_finish_en) begin op_table_active[op_table_finish_ptr] <= 1'b0; end if (op_table_read_start_en) begin op_table_read_init[op_table_read_start_ptr] <= op_table_init[op_table_read_start_ptr]; op_table_read_commit[op_table_read_start_ptr] <= op_table_read_start_commit; if (op_table_read_init[op_table_read_start_ptr] != op_table_init[op_table_read_start_ptr]) begin op_table_read_count_start[op_table_read_start_ptr] <= op_table_read_count_finish[op_table_read_start_ptr]; end else begin op_table_read_count_start[op_table_read_start_ptr] <= op_table_read_count_start[op_table_read_start_ptr] + 1; end end if (op_table_read_finish_en) begin op_table_read_count_finish[op_table_read_finish_ptr] <= op_table_read_count_finish[op_table_read_finish_ptr] + 1; end if (op_table_write_start_en) begin op_table_write_init[op_table_write_start_ptr] <= op_table_init[op_table_write_start_ptr]; op_table_write_commit[op_table_write_start_ptr] <= op_table_write_start_commit; if (op_table_write_init[op_table_write_start_ptr] != op_table_init[op_table_write_start_ptr]) begin op_table_write_count_start[op_table_write_start_ptr] <= op_table_write_count_finish[op_table_write_start_ptr]; end else begin op_table_write_count_start[op_table_write_start_ptr] <= op_table_write_count_start[op_table_write_start_ptr] + 1; end end else if (op_table_write_start_commit) begin op_table_write_commit[op_table_write_start_ptr] <= op_table_write_start_commit; end if (op_table_write_finish_en) begin op_table_write_count_finish[op_table_write_finish_ptr] <= op_table_write_count_finish[op_table_write_finish_ptr] + 1; end if (rst) begin req_state_reg <= REQ_STATE_IDLE; tlp_state_reg <= TLP_STATE_IDLE; axi_addr_valid_reg <= 1'b0; tlp_cmd_valid_reg <= 1'b0; s_axis_rc_tready_reg <= 1'b0; s_axis_read_desc_ready_reg <= 1'b0; m_axis_read_desc_status_valid_reg <= 1'b0; m_axi_awvalid_reg <= 1'b0; m_axi_bready_reg <= 1'b0; active_tx_count_reg <= {RQ_SEQ_NUM_WIDTH{1'b0}}; active_tx_count_av_reg = 1'b1; tag_table_we_tlp_reg <= 1'b0; op_table_active <= 0; status_error_cor_reg <= 1'b0; status_error_uncor_reg <= 1'b0; end end // output datapath logic (PCIe TLP) reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}}; reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}}; reg m_axis_rq_tvalid_reg = 1'b0, m_axis_rq_tvalid_next; reg m_axis_rq_tlast_reg = 1'b0; reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser_reg = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}}; reg [AXIS_PCIE_DATA_WIDTH-1:0] temp_m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}}; reg [AXIS_PCIE_KEEP_WIDTH-1:0] temp_m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}}; reg temp_m_axis_rq_tvalid_reg = 1'b0, temp_m_axis_rq_tvalid_next; reg temp_m_axis_rq_tlast_reg = 1'b0; reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] temp_m_axis_rq_tuser_reg = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}}; // datapath control reg store_axis_rq_int_to_output; reg store_axis_rq_int_to_temp; reg store_axis_rq_temp_to_output; assign m_axis_rq_tdata = m_axis_rq_tdata_reg; assign m_axis_rq_tkeep = m_axis_rq_tkeep_reg; assign m_axis_rq_tvalid = m_axis_rq_tvalid_reg; assign m_axis_rq_tlast = m_axis_rq_tlast_reg; assign m_axis_rq_tuser = m_axis_rq_tuser_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign m_axis_rq_tready_int_early = m_axis_rq_tready || (!temp_m_axis_rq_tvalid_reg && (!m_axis_rq_tvalid_reg || !m_axis_rq_tvalid_int)); always @* begin // transfer sink ready state to source m_axis_rq_tvalid_next = m_axis_rq_tvalid_reg; temp_m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg; store_axis_rq_int_to_output = 1'b0; store_axis_rq_int_to_temp = 1'b0; store_axis_rq_temp_to_output = 1'b0; if (m_axis_rq_tready_int_reg) begin // input is ready if (m_axis_rq_tready || !m_axis_rq_tvalid_reg) begin // output is ready or currently not valid, transfer data to output m_axis_rq_tvalid_next = m_axis_rq_tvalid_int; store_axis_rq_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axis_rq_tvalid_next = m_axis_rq_tvalid_int; store_axis_rq_int_to_temp = 1'b1; end end else if (m_axis_rq_tready) begin // input is not ready, but output is ready m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg; temp_m_axis_rq_tvalid_next = 1'b0; store_axis_rq_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin m_axis_rq_tvalid_reg <= 1'b0; m_axis_rq_tready_int_reg <= 1'b0; temp_m_axis_rq_tvalid_reg <= 1'b0; end else begin m_axis_rq_tvalid_reg <= m_axis_rq_tvalid_next; m_axis_rq_tready_int_reg <= m_axis_rq_tready_int_early; temp_m_axis_rq_tvalid_reg <= temp_m_axis_rq_tvalid_next; end // datapath if (store_axis_rq_int_to_output) begin m_axis_rq_tdata_reg <= m_axis_rq_tdata_int; m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int; m_axis_rq_tlast_reg <= m_axis_rq_tlast_int; m_axis_rq_tuser_reg <= m_axis_rq_tuser_int; end else if (store_axis_rq_temp_to_output) begin m_axis_rq_tdata_reg <= temp_m_axis_rq_tdata_reg; m_axis_rq_tkeep_reg <= temp_m_axis_rq_tkeep_reg; m_axis_rq_tlast_reg <= temp_m_axis_rq_tlast_reg; m_axis_rq_tuser_reg <= temp_m_axis_rq_tuser_reg; end if (store_axis_rq_int_to_temp) begin temp_m_axis_rq_tdata_reg <= m_axis_rq_tdata_int; temp_m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int; temp_m_axis_rq_tlast_reg <= m_axis_rq_tlast_int; temp_m_axis_rq_tuser_reg <= m_axis_rq_tuser_int; end end // output datapath logic (AXI write data) reg [AXI_DATA_WIDTH-1:0] m_axi_wdata_reg = {AXI_DATA_WIDTH{1'b0}}; reg [AXI_STRB_WIDTH-1:0] m_axi_wstrb_reg = {AXI_STRB_WIDTH{1'b0}}; reg m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next; reg m_axi_wlast_reg = 1'b0; reg [AXI_DATA_WIDTH-1:0] temp_m_axi_wdata_reg = {AXI_DATA_WIDTH{1'b0}}; reg [AXI_STRB_WIDTH-1:0] temp_m_axi_wstrb_reg = {AXI_STRB_WIDTH{1'b0}}; reg temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next; reg temp_m_axi_wlast_reg = 1'b0; // datapath control reg store_axi_w_int_to_output; reg store_axi_w_int_to_temp; reg store_axi_w_temp_to_output; assign m_axi_wdata = m_axi_wdata_reg; assign m_axi_wstrb = m_axi_wstrb_reg; assign m_axi_wvalid = m_axi_wvalid_reg; assign m_axi_wlast = m_axi_wlast_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign m_axi_wready_int_early = m_axi_wready || (!temp_m_axi_wvalid_reg && (!m_axi_wvalid_reg || !m_axi_wvalid_int)); always @* begin // transfer sink ready state to source m_axi_wvalid_next = m_axi_wvalid_reg; temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg; store_axi_w_int_to_output = 1'b0; store_axi_w_int_to_temp = 1'b0; store_axi_w_temp_to_output = 1'b0; if (m_axi_wready_int_reg) begin // input is ready if (m_axi_wready || !m_axi_wvalid_reg) begin // output is ready or currently not valid, transfer data to output m_axi_wvalid_next = m_axi_wvalid_int; store_axi_w_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axi_wvalid_next = m_axi_wvalid_int; store_axi_w_int_to_temp = 1'b1; end end else if (m_axi_wready) begin // input is not ready, but output is ready m_axi_wvalid_next = temp_m_axi_wvalid_reg; temp_m_axi_wvalid_next = 1'b0; store_axi_w_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin m_axi_wvalid_reg <= 1'b0; m_axi_wready_int_reg <= 1'b0; temp_m_axi_wvalid_reg <= 1'b0; end else begin m_axi_wvalid_reg <= m_axi_wvalid_next; m_axi_wready_int_reg <= m_axi_wready_int_early; temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next; end // datapath if (store_axi_w_int_to_output) begin m_axi_wdata_reg <= m_axi_wdata_int; m_axi_wstrb_reg <= m_axi_wstrb_int; m_axi_wlast_reg <= m_axi_wlast_int; end else if (store_axi_w_temp_to_output) begin m_axi_wdata_reg <= temp_m_axi_wdata_reg; m_axi_wstrb_reg <= temp_m_axi_wstrb_reg; m_axi_wlast_reg <= temp_m_axi_wlast_reg; end if (store_axi_w_int_to_temp) begin temp_m_axi_wdata_reg <= m_axi_wdata_int; temp_m_axi_wstrb_reg <= m_axi_wstrb_int; temp_m_axi_wlast_reg <= m_axi_wlast_int; end end endmodule