#!/usr/bin/env python """ Generates an AXI Stream switch wrapper with the specified number of ports """ import argparse from jinja2 import Template def main(): parser = argparse.ArgumentParser(description=__doc__.strip()) parser.add_argument('-p', '--ports', type=int, default=[4], nargs='+', help="number of ports") parser.add_argument('-n', '--name', type=str, help="module name") parser.add_argument('-o', '--output', type=str, help="output file name") args = parser.parse_args() try: generate(**args.__dict__) except IOError as ex: print(ex) exit(1) def generate(ports=4, name=None, output=None): if type(ports) is int: m = n = ports elif len(ports) == 1: m = n = ports[0] else: m, n = ports if name is None: name = "axis_ram_switch_wrap_{0}x{1}".format(m, n) if output is None: output = name + ".v" print("Generating {0}x{1} port AXI stream RAM switch wrapper {2}...".format(m, n, name)) cm = (m-1).bit_length() cn = (n-1).bit_length() t = Template(u"""/* Copyright (c) 2018-2021 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4-Stream {{m}}x{{n}} RAM switch (wrapper) */ module {{name}} # ( // FIFO depth in words (each virtual FIFO) // KEEP_WIDTH words per cycle if KEEP_ENABLE set // Rounded up to nearest power of 2 cycles parameter FIFO_DEPTH = 4096, // Command FIFO depth (each virtual FIFO) // Rounded up to nearest power of 2 parameter CMD_FIFO_DEPTH = 32, // Speedup factor (internal data width scaling factor) // Speedup of 0 scales internal width to provide maximum bandwidth parameter SPEEDUP = 0, // Width of input AXI stream interfaces in bits parameter S_DATA_WIDTH = 8, // Propagate tkeep signal parameter S_KEEP_ENABLE = (S_DATA_WIDTH>8), // tkeep signal width (words per cycle) parameter S_KEEP_WIDTH = ((S_DATA_WIDTH+7)/8), // Width of output AXI stream interfaces in bits parameter M_DATA_WIDTH = 8, // Propagate tkeep signal parameter M_KEEP_ENABLE = (M_DATA_WIDTH>8), // tkeep signal width (words per cycle) parameter M_KEEP_WIDTH = ((M_DATA_WIDTH+7)/8), // Propagate tid signal parameter ID_ENABLE = 0, // input tid signal width parameter S_ID_WIDTH = 8, // output tid signal width parameter M_ID_WIDTH = S_ID_WIDTH+{{cm}}, // output tdest signal width parameter M_DEST_WIDTH = 1, // input tdest signal width // must be wide enough to uniquely address outputs parameter S_DEST_WIDTH = M_DEST_WIDTH+{{cn}}, // Propagate tuser signal parameter USER_ENABLE = 1, // tuser signal width parameter USER_WIDTH = 1, // tuser value for bad frame marker parameter USER_BAD_FRAME_VALUE = 1'b1, // tuser mask for bad frame marker parameter USER_BAD_FRAME_MASK = 1'b1, // Drop frames marked bad parameter DROP_BAD_FRAME = 0, // Drop incoming frames when full // When set, s_axis_tready is always asserted parameter DROP_WHEN_FULL = 0, {%- for p in range(n) %} // Output interface routing base tdest selection // Port selected if M_BASE <= tdest <= M_TOP parameter M{{'%02d'%p}}_BASE = {{p}}, // Output interface routing top tdest selection // Port selected if M_BASE <= tdest <= M_TOP parameter M{{'%02d'%p}}_TOP = {{p}}, // Interface connection control parameter M{{'%02d'%p}}_CONNECT = {{m}}'b{% for p in range(m) %}1{% endfor %}, {%- endfor %} // Update tid with routing information parameter UPDATE_TID = 0, // select round robin arbitration parameter ARB_TYPE_ROUND_ROBIN = 1, // LSB priority selection parameter ARB_LSB_HIGH_PRIORITY = 1, // RAM read data output pipeline stages parameter RAM_PIPELINE = 2 ) ( input wire clk, input wire rst, /* * AXI Stream inputs */ {%- for p in range(m) %} input wire [S_DATA_WIDTH-1:0] s{{'%02d'%p}}_axis_tdata, input wire [S_KEEP_WIDTH-1:0] s{{'%02d'%p}}_axis_tkeep, input wire s{{'%02d'%p}}_axis_tvalid, output wire s{{'%02d'%p}}_axis_tready, input wire s{{'%02d'%p}}_axis_tlast, input wire [S_ID_WIDTH-1:0] s{{'%02d'%p}}_axis_tid, input wire [S_DEST_WIDTH-1:0] s{{'%02d'%p}}_axis_tdest, input wire [USER_WIDTH-1:0] s{{'%02d'%p}}_axis_tuser, {% endfor %} /* * AXI Stream outputs */ {%- for p in range(n) %} output wire [M_DATA_WIDTH-1:0] m{{'%02d'%p}}_axis_tdata, output wire [M_KEEP_WIDTH-1:0] m{{'%02d'%p}}_axis_tkeep, output wire m{{'%02d'%p}}_axis_tvalid, input wire m{{'%02d'%p}}_axis_tready, output wire m{{'%02d'%p}}_axis_tlast, output wire [M_ID_WIDTH-1:0] m{{'%02d'%p}}_axis_tid, output wire [M_DEST_WIDTH-1:0] m{{'%02d'%p}}_axis_tdest, output wire [USER_WIDTH-1:0] m{{'%02d'%p}}_axis_tuser, {% endfor %} /* * Status */ output wire [{{m-1}}:0] status_overflow, output wire [{{m-1}}:0] status_bad_frame, output wire [{{m-1}}:0] status_good_frame ); // parameter sizing helpers function [S_DEST_WIDTH-1:0] w_dw(input [S_DEST_WIDTH-1:0] val); w_dw = val; endfunction function [{{m-1}}:0] w_s(input [{{m-1}}:0] val); w_s = val; endfunction axis_ram_switch #( .FIFO_DEPTH(FIFO_DEPTH), .CMD_FIFO_DEPTH(CMD_FIFO_DEPTH), .SPEEDUP(SPEEDUP), .S_COUNT({{m}}), .M_COUNT({{n}}), .S_DATA_WIDTH(S_DATA_WIDTH), .S_KEEP_ENABLE(S_KEEP_ENABLE), .S_KEEP_WIDTH(S_KEEP_WIDTH), .M_DATA_WIDTH(M_DATA_WIDTH), .M_KEEP_ENABLE(M_KEEP_ENABLE), .M_KEEP_WIDTH(M_KEEP_WIDTH), .ID_ENABLE(ID_ENABLE), .S_ID_WIDTH(S_ID_WIDTH), .M_ID_WIDTH(M_ID_WIDTH), .S_DEST_WIDTH(S_DEST_WIDTH), .M_DEST_WIDTH(M_DEST_WIDTH), .USER_ENABLE(USER_ENABLE), .USER_WIDTH(USER_WIDTH), .USER_BAD_FRAME_VALUE(USER_BAD_FRAME_VALUE), .USER_BAD_FRAME_MASK(USER_BAD_FRAME_MASK), .DROP_BAD_FRAME(DROP_BAD_FRAME), .DROP_WHEN_FULL(DROP_WHEN_FULL), .M_BASE({ {% for p in range(n-1,-1,-1) %}w_dw(M{{'%02d'%p}}_BASE){% if not loop.last %}, {% endif %}{% endfor %} }), .M_TOP({ {% for p in range(n-1,-1,-1) %}w_dw(M{{'%02d'%p}}_TOP){% if not loop.last %}, {% endif %}{% endfor %} }), .M_CONNECT({ {% for p in range(n-1,-1,-1) %}w_s(M{{'%02d'%p}}_CONNECT){% if not loop.last %}, {% endif %}{% endfor %} }), .UPDATE_TID(UPDATE_TID), .ARB_TYPE_ROUND_ROBIN(ARB_TYPE_ROUND_ROBIN), .ARB_LSB_HIGH_PRIORITY(ARB_LSB_HIGH_PRIORITY), .RAM_PIPELINE(RAM_PIPELINE) ) axis_ram_switch_inst ( .clk(clk), .rst(rst), // AXI inputs .s_axis_tdata({ {% for p in range(m-1,-1,-1) %}s{{'%02d'%p}}_axis_tdata{% if not loop.last %}, {% endif %}{% endfor %} }), .s_axis_tkeep({ {% for p in range(m-1,-1,-1) %}s{{'%02d'%p}}_axis_tkeep{% if not loop.last %}, {% endif %}{% endfor %} }), .s_axis_tvalid({ {% for p in range(m-1,-1,-1) %}s{{'%02d'%p}}_axis_tvalid{% if not loop.last %}, {% endif %}{% endfor %} }), .s_axis_tready({ {% for p in range(m-1,-1,-1) %}s{{'%02d'%p}}_axis_tready{% if not loop.last %}, {% endif %}{% endfor %} }), .s_axis_tlast({ {% for p in range(m-1,-1,-1) %}s{{'%02d'%p}}_axis_tlast{% if not loop.last %}, {% endif %}{% endfor %} }), .s_axis_tid({ {% for p in range(m-1,-1,-1) %}s{{'%02d'%p}}_axis_tid{% if not loop.last %}, {% endif %}{% endfor %} }), .s_axis_tdest({ {% for p in range(m-1,-1,-1) %}s{{'%02d'%p}}_axis_tdest{% if not loop.last %}, {% endif %}{% endfor %} }), .s_axis_tuser({ {% for p in range(m-1,-1,-1) %}s{{'%02d'%p}}_axis_tuser{% if not loop.last %}, {% endif %}{% endfor %} }), // AXI outputs .m_axis_tdata({ {% for p in range(n-1,-1,-1) %}m{{'%02d'%p}}_axis_tdata{% if not loop.last %}, {% endif %}{% endfor %} }), .m_axis_tkeep({ {% for p in range(n-1,-1,-1) %}m{{'%02d'%p}}_axis_tkeep{% if not loop.last %}, {% endif %}{% endfor %} }), .m_axis_tvalid({ {% for p in range(n-1,-1,-1) %}m{{'%02d'%p}}_axis_tvalid{% if not loop.last %}, {% endif %}{% endfor %} }), .m_axis_tready({ {% for p in range(n-1,-1,-1) %}m{{'%02d'%p}}_axis_tready{% if not loop.last %}, {% endif %}{% endfor %} }), .m_axis_tlast({ {% for p in range(n-1,-1,-1) %}m{{'%02d'%p}}_axis_tlast{% if not loop.last %}, {% endif %}{% endfor %} }), .m_axis_tid({ {% for p in range(n-1,-1,-1) %}m{{'%02d'%p}}_axis_tid{% if not loop.last %}, {% endif %}{% endfor %} }), .m_axis_tdest({ {% for p in range(n-1,-1,-1) %}m{{'%02d'%p}}_axis_tdest{% if not loop.last %}, {% endif %}{% endfor %} }), .m_axis_tuser({ {% for p in range(n-1,-1,-1) %}m{{'%02d'%p}}_axis_tuser{% if not loop.last %}, {% endif %}{% endfor %} }), // Status .status_overflow(status_overflow), .status_bad_frame(status_bad_frame), .status_good_frame(status_good_frame) ); endmodule `resetall """) print(f"Writing file '{output}'...") with open(output, 'w') as f: f.write(t.render( m=m, n=n, cm=cm, cn=cn, name=name )) f.flush() print("Done") if __name__ == "__main__": main()