/* Copyright (c) 2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4 lite width adapter (read) */ module axil_adapter_rd # ( // Width of address bus in bits parameter ADDR_WIDTH = 32, // Width of input (slave) interface data bus in bits parameter S_DATA_WIDTH = 32, // Width of input (slave) interface wstrb (width of data bus in words) parameter S_STRB_WIDTH = (S_DATA_WIDTH/8), // Width of output (master) interface data bus in bits parameter M_DATA_WIDTH = 32, // Width of output (master) interface wstrb (width of data bus in words) parameter M_STRB_WIDTH = (M_DATA_WIDTH/8) ) ( input wire clk, input wire rst, /* * AXI lite slave interface */ input wire [ADDR_WIDTH-1:0] s_axil_araddr, input wire [2:0] s_axil_arprot, input wire s_axil_arvalid, output wire s_axil_arready, output wire [S_DATA_WIDTH-1:0] s_axil_rdata, output wire [1:0] s_axil_rresp, output wire s_axil_rvalid, input wire s_axil_rready, /* * AXI lite master interface */ output wire [ADDR_WIDTH-1:0] m_axil_araddr, output wire [2:0] m_axil_arprot, output wire m_axil_arvalid, input wire m_axil_arready, input wire [M_DATA_WIDTH-1:0] m_axil_rdata, input wire [1:0] m_axil_rresp, input wire m_axil_rvalid, output wire m_axil_rready ); parameter S_ADDR_BIT_OFFSET = $clog2(S_STRB_WIDTH); parameter M_ADDR_BIT_OFFSET = $clog2(M_STRB_WIDTH); parameter S_WORD_WIDTH = S_STRB_WIDTH; parameter M_WORD_WIDTH = M_STRB_WIDTH; parameter S_WORD_SIZE = S_DATA_WIDTH/S_WORD_WIDTH; parameter M_WORD_SIZE = M_DATA_WIDTH/M_WORD_WIDTH; // output bus is wider parameter EXPAND = M_STRB_WIDTH > S_STRB_WIDTH; parameter DATA_WIDTH = EXPAND ? M_DATA_WIDTH : S_DATA_WIDTH; parameter STRB_WIDTH = EXPAND ? M_STRB_WIDTH : S_STRB_WIDTH; // required number of segments in wider bus parameter SEGMENT_COUNT = EXPAND ? (M_STRB_WIDTH / S_STRB_WIDTH) : (S_STRB_WIDTH / M_STRB_WIDTH); parameter SEGMENT_COUNT_WIDTH = SEGMENT_COUNT == 1 ? 1 : $clog2(SEGMENT_COUNT); // data width and keep width per segment parameter SEGMENT_DATA_WIDTH = DATA_WIDTH / SEGMENT_COUNT; parameter SEGMENT_STRB_WIDTH = STRB_WIDTH / SEGMENT_COUNT; // bus width assertions initial begin if (S_WORD_SIZE * S_STRB_WIDTH != S_DATA_WIDTH) begin $error("Error: AXI slave interface data width not evenly divisble (instance %m)"); $finish; end if (M_WORD_SIZE * M_STRB_WIDTH != M_DATA_WIDTH) begin $error("Error: AXI master interface data width not evenly divisble (instance %m)"); $finish; end if (S_WORD_SIZE != M_WORD_SIZE) begin $error("Error: word size mismatch (instance %m)"); $finish; end if (2**$clog2(S_WORD_WIDTH) != S_WORD_WIDTH) begin $error("Error: AXI slave interface word width must be even power of two (instance %m)"); $finish; end if (2**$clog2(M_WORD_WIDTH) != M_WORD_WIDTH) begin $error("Error: AXI master interface word width must be even power of two (instance %m)"); $finish; end end localparam [0:0] STATE_IDLE = 1'd0, STATE_DATA = 1'd1; reg [0:0] state_reg = STATE_IDLE, state_next; reg [SEGMENT_COUNT_WIDTH-1:0] current_segment_reg = 0, current_segment_next; reg s_axil_arready_reg = 1'b0, s_axil_arready_next; reg [S_DATA_WIDTH-1:0] s_axil_rdata_reg = {S_DATA_WIDTH{1'b0}}, s_axil_rdata_next; reg [1:0] s_axil_rresp_reg = 2'd0, s_axil_rresp_next; reg s_axil_rvalid_reg = 1'b0, s_axil_rvalid_next; reg [ADDR_WIDTH-1:0] m_axil_araddr_reg = {ADDR_WIDTH{1'b0}}, m_axil_araddr_next; reg [2:0] m_axil_arprot_reg = 3'd0, m_axil_arprot_next; reg m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next; reg m_axil_rready_reg = 1'b0, m_axil_rready_next; assign s_axil_arready = s_axil_arready_reg; assign s_axil_rdata = s_axil_rdata_reg; assign s_axil_rresp = s_axil_rresp_reg; assign s_axil_rvalid = s_axil_rvalid_reg; assign m_axil_araddr = m_axil_araddr_reg; assign m_axil_arprot = m_axil_arprot_reg; assign m_axil_arvalid = m_axil_arvalid_reg; assign m_axil_rready = m_axil_rready_reg; always @* begin state_next = STATE_IDLE; current_segment_next = current_segment_reg; s_axil_arready_next = 1'b0; s_axil_rdata_next = s_axil_rdata_reg; s_axil_rresp_next = s_axil_rresp_reg; s_axil_rvalid_next = s_axil_rvalid_reg && !s_axil_rready; m_axil_araddr_next = m_axil_araddr_reg; m_axil_arprot_next = m_axil_arprot_reg; m_axil_arvalid_next = m_axil_arvalid_reg && !m_axil_arready; m_axil_rready_next = 1'b0; if (SEGMENT_COUNT == 1 || EXPAND) begin // master output is same width or wider; single cycle direct transfer case (state_reg) STATE_IDLE: begin s_axil_arready_next = !m_axil_arvalid; if (s_axil_arready && s_axil_arvalid) begin s_axil_arready_next = 1'b0; m_axil_araddr_next = s_axil_araddr; m_axil_arprot_next = s_axil_arprot; m_axil_arvalid_next = 1'b1; m_axil_rready_next = !m_axil_rvalid; state_next = STATE_DATA; end else begin state_next = STATE_IDLE; end end STATE_DATA: begin m_axil_rready_next = !s_axil_rvalid; if (m_axil_rready && m_axil_rvalid) begin m_axil_rready_next = 1'b0; if (M_WORD_WIDTH == S_WORD_WIDTH) begin s_axil_rdata_next = m_axil_rdata; end else begin s_axil_rdata_next = m_axil_rdata >> (m_axil_araddr_reg[M_ADDR_BIT_OFFSET - 1:S_ADDR_BIT_OFFSET] * S_DATA_WIDTH); end s_axil_rresp_next = m_axil_rresp; s_axil_rvalid_next = 1'b1; s_axil_arready_next = !m_axil_arvalid; state_next = STATE_IDLE; end else begin state_next = STATE_DATA; end end endcase end else begin // master output is narrower; may need several cycles case (state_reg) STATE_IDLE: begin s_axil_arready_next = !m_axil_arvalid; current_segment_next = 0; s_axil_rresp_next = 2'd0; if (s_axil_arready && s_axil_arvalid) begin s_axil_arready_next = 1'b0; m_axil_araddr_next = s_axil_araddr & ({ADDR_WIDTH{1'b1}} << S_ADDR_BIT_OFFSET); m_axil_arprot_next = s_axil_arprot; m_axil_arvalid_next = 1'b1; m_axil_rready_next = !m_axil_rvalid; state_next = STATE_DATA; end else begin state_next = STATE_IDLE; end end STATE_DATA: begin m_axil_rready_next = !s_axil_rvalid; if (m_axil_rready && m_axil_rvalid) begin m_axil_rready_next = 1'b0; s_axil_rdata_next[current_segment_reg*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH] = m_axil_rdata; if (m_axil_rresp) begin s_axil_rresp_next = m_axil_rresp; end if (current_segment_reg == SEGMENT_COUNT-1) begin s_axil_rvalid_next = 1'b1; s_axil_arready_next = !m_axil_arvalid; state_next = STATE_IDLE; end else begin current_segment_next = current_segment_reg + 1; m_axil_araddr_next = m_axil_araddr_reg + SEGMENT_STRB_WIDTH; m_axil_arvalid_next = 1'b1; state_next = STATE_DATA; end end else begin state_next = STATE_DATA; end end endcase end end always @(posedge clk) begin state_reg <= state_next; current_segment_reg <= current_segment_next; s_axil_arready_reg <= s_axil_arready_next; s_axil_rdata_reg <= s_axil_rdata_next; s_axil_rresp_reg <= s_axil_rresp_next; s_axil_rvalid_reg <= s_axil_rvalid_next; m_axil_araddr_reg <= m_axil_araddr_next; m_axil_arprot_reg <= m_axil_arprot_next; m_axil_arvalid_reg <= m_axil_arvalid_next; m_axil_rready_reg <= m_axil_rready_next; if (rst) begin state_reg <= STATE_IDLE; s_axil_arready_reg <= 1'b0; s_axil_rvalid_reg <= 1'b0; m_axil_arvalid_reg <= 1'b0; m_axil_rready_reg <= 1'b0; end end endmodule