1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/fpga/common/rtl/event_mux.v
Alex Forencich 448fa8eb4c Use SPDX
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2023-06-26 11:44:57 -07:00

215 lines
7.9 KiB
Verilog

// SPDX-License-Identifier: BSD-2-Clause-Views
/*
* Copyright (c) 2019-2023 The Regents of the University of California
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* Event mux
*/
module event_mux #
(
// Number of ports
parameter PORTS = 2,
// Queue index width
parameter QUEUE_INDEX_WIDTH = 4,
// Event type field width
parameter EVENT_TYPE_WIDTH = 16,
// Event source field width
parameter EVENT_SOURCE_WIDTH = 16,
// select round robin arbitration
parameter ARB_TYPE_ROUND_ROBIN = 0,
// LSB priority selection
parameter ARB_LSB_HIGH_PRIORITY = 1
)
(
input wire clk,
input wire rst,
/*
* Event output
*/
output wire [QUEUE_INDEX_WIDTH-1:0] m_axis_event_queue,
output wire [EVENT_TYPE_WIDTH-1:0] m_axis_event_type,
output wire [EVENT_SOURCE_WIDTH-1:0] m_axis_event_source,
output wire m_axis_event_valid,
input wire m_axis_event_ready,
/*
* Event input
*/
input wire [PORTS*QUEUE_INDEX_WIDTH-1:0] s_axis_event_queue,
input wire [PORTS*EVENT_TYPE_WIDTH-1:0] s_axis_event_type,
input wire [PORTS*EVENT_SOURCE_WIDTH-1:0] s_axis_event_source,
input wire [PORTS-1:0] s_axis_event_valid,
output wire [PORTS-1:0] s_axis_event_ready
);
parameter CL_PORTS = $clog2(PORTS);
// eventriptor mux
wire [PORTS-1:0] request;
wire [PORTS-1:0] acknowledge;
wire [PORTS-1:0] grant;
wire grant_valid;
wire [CL_PORTS-1:0] grant_encoded;
// input registers to pipeline arbitration delay
reg [PORTS*QUEUE_INDEX_WIDTH-1:0] s_axis_event_queue_reg = 0;
reg [PORTS*EVENT_TYPE_WIDTH-1:0] s_axis_event_type_reg = 0;
reg [PORTS*EVENT_SOURCE_WIDTH-1:0] s_axis_event_source_reg = 0;
reg [PORTS-1:0] s_axis_event_valid_reg = 0;
// internal datapath
reg [QUEUE_INDEX_WIDTH-1:0] m_axis_event_queue_int;
reg [EVENT_TYPE_WIDTH-1:0] m_axis_event_type_int;
reg [EVENT_SOURCE_WIDTH-1:0] m_axis_event_source_int;
reg m_axis_event_valid_int;
reg m_axis_event_ready_int_reg = 1'b0;
wire m_axis_event_ready_int_early;
assign s_axis_event_ready = ~s_axis_event_valid_reg | ({PORTS{m_axis_event_ready_int_reg}} & grant);
// mux for incoming packet
wire [QUEUE_INDEX_WIDTH-1:0] current_s_event_queue = s_axis_event_queue_reg[grant_encoded*QUEUE_INDEX_WIDTH +: QUEUE_INDEX_WIDTH];
wire [EVENT_TYPE_WIDTH-1:0] current_s_event_type = s_axis_event_type_reg[grant_encoded*EVENT_TYPE_WIDTH +: EVENT_TYPE_WIDTH];
wire [EVENT_SOURCE_WIDTH-1:0] current_s_event_source = s_axis_event_source_reg[grant_encoded*EVENT_SOURCE_WIDTH +: EVENT_SOURCE_WIDTH];
wire current_s_event_valid = s_axis_event_valid_reg[grant_encoded];
wire current_s_event_ready = s_axis_event_ready[grant_encoded];
// arbiter instance
arbiter #(
.PORTS(PORTS),
.ARB_TYPE_ROUND_ROBIN(ARB_TYPE_ROUND_ROBIN),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.ARB_LSB_HIGH_PRIORITY(ARB_LSB_HIGH_PRIORITY)
)
arb_inst (
.clk(clk),
.rst(rst),
.request(request),
.acknowledge(acknowledge),
.grant(grant),
.grant_valid(grant_valid),
.grant_encoded(grant_encoded)
);
assign request = (s_axis_event_valid_reg & ~grant) | (s_axis_event_valid & grant);
assign acknowledge = grant & s_axis_event_valid_reg & {PORTS{m_axis_event_ready_int_reg}};
always @* begin
m_axis_event_queue_int = current_s_event_queue;
m_axis_event_type_int = current_s_event_type;
m_axis_event_source_int = current_s_event_source;
m_axis_event_valid_int = current_s_event_valid && m_axis_event_ready_int_reg && grant_valid;
end
integer i;
always @(posedge clk) begin
// register inputs
for (i = 0; i < PORTS; i = i + 1) begin
if (s_axis_event_ready[i]) begin
s_axis_event_queue_reg[i*QUEUE_INDEX_WIDTH +: QUEUE_INDEX_WIDTH] <= s_axis_event_queue[i*QUEUE_INDEX_WIDTH +: QUEUE_INDEX_WIDTH];
s_axis_event_type_reg[i*EVENT_TYPE_WIDTH +: EVENT_TYPE_WIDTH] <= s_axis_event_type[i*EVENT_TYPE_WIDTH +: EVENT_TYPE_WIDTH];
s_axis_event_source_reg[i*EVENT_SOURCE_WIDTH +: EVENT_SOURCE_WIDTH] <= s_axis_event_source[i*EVENT_SOURCE_WIDTH +: EVENT_SOURCE_WIDTH];
s_axis_event_valid_reg[i] <= s_axis_event_valid[i];
end
end
if (rst) begin
s_axis_event_valid_reg <= 0;
end
end
// output datapath logic
reg [QUEUE_INDEX_WIDTH-1:0] m_axis_event_queue_reg = {QUEUE_INDEX_WIDTH{1'b0}};
reg [EVENT_TYPE_WIDTH-1:0] m_axis_event_type_reg = {EVENT_TYPE_WIDTH{1'b0}};
reg [EVENT_SOURCE_WIDTH-1:0] m_axis_event_source_reg = {EVENT_SOURCE_WIDTH{1'b0}};
reg m_axis_event_valid_reg = 1'b0, m_axis_event_valid_next;
reg [QUEUE_INDEX_WIDTH-1:0] temp_m_axis_event_queue_reg = {QUEUE_INDEX_WIDTH{1'b0}};
reg [EVENT_TYPE_WIDTH-1:0] temp_m_axis_event_type_reg = {EVENT_TYPE_WIDTH{1'b0}};
reg [EVENT_SOURCE_WIDTH-1:0] temp_m_axis_event_source_reg = {EVENT_SOURCE_WIDTH{1'b0}};
reg temp_m_axis_event_valid_reg = 1'b0, temp_m_axis_event_valid_next;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_event_queue = m_axis_event_queue_reg;
assign m_axis_event_type = m_axis_event_type_reg;
assign m_axis_event_source = m_axis_event_source_reg;
assign m_axis_event_valid = m_axis_event_valid_reg;
// enable ready input next cycle if output is ready or if both output registers are empty
assign m_axis_event_ready_int_early = m_axis_event_ready || (!temp_m_axis_event_valid_reg && !m_axis_event_valid_reg);
always @* begin
// transfer sink ready state to source
m_axis_event_valid_next = m_axis_event_valid_reg;
temp_m_axis_event_valid_next = temp_m_axis_event_valid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_event_ready_int_reg) begin
// input is ready
if (m_axis_event_ready || !m_axis_event_valid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_event_valid_next = m_axis_event_valid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_event_valid_next = m_axis_event_valid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_event_ready) begin
// input is not ready, but output is ready
m_axis_event_valid_next = temp_m_axis_event_valid_reg;
temp_m_axis_event_valid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
m_axis_event_valid_reg <= m_axis_event_valid_next;
m_axis_event_ready_int_reg <= m_axis_event_ready_int_early;
temp_m_axis_event_valid_reg <= temp_m_axis_event_valid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_event_queue_reg <= m_axis_event_queue_int;
m_axis_event_type_reg <= m_axis_event_type_int;
m_axis_event_source_reg <= m_axis_event_source_int;
end else if (store_axis_temp_to_output) begin
m_axis_event_queue_reg <= temp_m_axis_event_queue_reg;
m_axis_event_type_reg <= temp_m_axis_event_type_reg;
m_axis_event_source_reg <= temp_m_axis_event_source_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_event_queue_reg <= m_axis_event_queue_int;
temp_m_axis_event_type_reg <= m_axis_event_type_int;
temp_m_axis_event_source_reg <= m_axis_event_source_int;
end
if (rst) begin
m_axis_event_valid_reg <= 1'b0;
m_axis_event_ready_int_reg <= 1'b0;
temp_m_axis_event_valid_reg <= 1'b0;
end
end
endmodule
`resetall