1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-30 08:32:52 +08:00
2020-08-06 17:15:38 -07:00

1315 lines
38 KiB
Verilog

/*
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* FPGA top-level module
*/
module fpga (
/*
* Clock: 125MHz LVDS
* Reset: Push button, active low
*/
input wire clk_125mhz_p,
input wire clk_125mhz_n,
input wire reset,
/*
* GPIO
*/
input wire btnu,
input wire btnl,
input wire btnd,
input wire btnr,
input wire btnc,
input wire [3:0] sw,
output wire [7:0] led,
/*
* I2C for board management
*/
inout wire i2c_scl,
inout wire i2c_sda,
/*
* Ethernet: QSFP28
*/
output wire qsfp1_tx1_p,
output wire qsfp1_tx1_n,
input wire qsfp1_rx1_p,
input wire qsfp1_rx1_n,
output wire qsfp1_tx2_p,
output wire qsfp1_tx2_n,
input wire qsfp1_rx2_p,
input wire qsfp1_rx2_n,
output wire qsfp1_tx3_p,
output wire qsfp1_tx3_n,
input wire qsfp1_rx3_p,
input wire qsfp1_rx3_n,
output wire qsfp1_tx4_p,
output wire qsfp1_tx4_n,
input wire qsfp1_rx4_p,
input wire qsfp1_rx4_n,
input wire qsfp1_mgt_refclk_0_p,
input wire qsfp1_mgt_refclk_0_n,
// input wire qsfp1_mgt_refclk_1_p,
// input wire qsfp1_mgt_refclk_1_n,
// output wire qsfp1_recclk_p,
// output wire qsfp1_recclk_n,
output wire qsfp1_modsell,
output wire qsfp1_resetl,
input wire qsfp1_modprsl,
input wire qsfp1_intl,
output wire qsfp1_lpmode,
output wire qsfp2_tx1_p,
output wire qsfp2_tx1_n,
input wire qsfp2_rx1_p,
input wire qsfp2_rx1_n,
output wire qsfp2_tx2_p,
output wire qsfp2_tx2_n,
input wire qsfp2_rx2_p,
input wire qsfp2_rx2_n,
output wire qsfp2_tx3_p,
output wire qsfp2_tx3_n,
input wire qsfp2_rx3_p,
input wire qsfp2_rx3_n,
output wire qsfp2_tx4_p,
output wire qsfp2_tx4_n,
input wire qsfp2_rx4_p,
input wire qsfp2_rx4_n,
// input wire qsfp2_mgt_refclk_0_p,
// input wire qsfp2_mgt_refclk_0_n,
// input wire qsfp2_mgt_refclk_1_p,
// input wire qsfp2_mgt_refclk_1_n,
// output wire qsfp2_recclk_p,
// output wire qsfp2_recclk_n,
output wire qsfp2_modsell,
output wire qsfp2_resetl,
input wire qsfp2_modprsl,
input wire qsfp2_intl,
output wire qsfp2_lpmode,
/*
* Ethernet: 1000BASE-T SGMII
*/
input wire phy_sgmii_rx_p,
input wire phy_sgmii_rx_n,
output wire phy_sgmii_tx_p,
output wire phy_sgmii_tx_n,
input wire phy_sgmii_clk_p,
input wire phy_sgmii_clk_n,
output wire phy_reset_n,
input wire phy_int_n,
inout wire phy_mdio,
output wire phy_mdc,
/*
* UART: 500000 bps, 8N1
*/
input wire uart_rxd,
output wire uart_txd,
output wire uart_rts,
input wire uart_cts
);
// Clock and reset
wire clk_125mhz_ibufg;
// Internal 125 MHz clock
wire clk_125mhz_mmcm_out;
wire clk_125mhz_int;
wire rst_125mhz_int;
// Internal 390.625 MHz clock
wire clk_390mhz_int;
wire rst_390mhz_int;
wire mmcm_rst = reset;
wire mmcm_locked;
wire mmcm_clkfb;
IBUFGDS #(
.DIFF_TERM("FALSE"),
.IBUF_LOW_PWR("FALSE")
)
clk_125mhz_ibufg_inst (
.O (clk_125mhz_ibufg),
.I (clk_125mhz_p),
.IB (clk_125mhz_n)
);
// MMCM instance
// 125 MHz in, 125 MHz out
// PFD range: 10 MHz to 500 MHz
// VCO range: 800 MHz to 1600 MHz
// M = 8, D = 1 sets Fvco = 1000 MHz (in range)
// Divide by 8 to get output frequency of 125 MHz
MMCME3_BASE #(
.BANDWIDTH("OPTIMIZED"),
.CLKOUT0_DIVIDE_F(8),
.CLKOUT0_DUTY_CYCLE(0.5),
.CLKOUT0_PHASE(0),
.CLKOUT1_DIVIDE(1),
.CLKOUT1_DUTY_CYCLE(0.5),
.CLKOUT1_PHASE(0),
.CLKOUT2_DIVIDE(1),
.CLKOUT2_DUTY_CYCLE(0.5),
.CLKOUT2_PHASE(0),
.CLKOUT3_DIVIDE(1),
.CLKOUT3_DUTY_CYCLE(0.5),
.CLKOUT3_PHASE(0),
.CLKOUT4_DIVIDE(1),
.CLKOUT4_DUTY_CYCLE(0.5),
.CLKOUT4_PHASE(0),
.CLKOUT5_DIVIDE(1),
.CLKOUT5_DUTY_CYCLE(0.5),
.CLKOUT5_PHASE(0),
.CLKOUT6_DIVIDE(1),
.CLKOUT6_DUTY_CYCLE(0.5),
.CLKOUT6_PHASE(0),
.CLKFBOUT_MULT_F(8),
.CLKFBOUT_PHASE(0),
.DIVCLK_DIVIDE(1),
.REF_JITTER1(0.010),
.CLKIN1_PERIOD(8.0),
.STARTUP_WAIT("FALSE"),
.CLKOUT4_CASCADE("FALSE")
)
clk_mmcm_inst (
.CLKIN1(clk_125mhz_ibufg),
.CLKFBIN(mmcm_clkfb),
.RST(mmcm_rst),
.PWRDWN(1'b0),
.CLKOUT0(clk_125mhz_mmcm_out),
.CLKOUT0B(),
.CLKOUT1(),
.CLKOUT1B(),
.CLKOUT2(),
.CLKOUT2B(),
.CLKOUT3(),
.CLKOUT3B(),
.CLKOUT4(),
.CLKOUT5(),
.CLKOUT6(),
.CLKFBOUT(mmcm_clkfb),
.CLKFBOUTB(),
.LOCKED(mmcm_locked)
);
BUFG
clk_125mhz_bufg_inst (
.I(clk_125mhz_mmcm_out),
.O(clk_125mhz_int)
);
sync_reset #(
.N(4)
)
sync_reset_125mhz_inst (
.clk(clk_125mhz_int),
.rst(~mmcm_locked),
.out(rst_125mhz_int)
);
// GPIO
wire btnu_int;
wire btnl_int;
wire btnd_int;
wire btnr_int;
wire btnc_int;
wire [3:0] sw_int;
debounce_switch #(
.WIDTH(9),
.N(4),
.RATE(156000)
)
debounce_switch_inst (
.clk(clk_390mhz_int),
.rst(rst_390mhz_int),
.in({btnu,
btnl,
btnd,
btnr,
btnc,
sw}),
.out({btnu_int,
btnl_int,
btnd_int,
btnr_int,
btnc_int,
sw_int})
);
wire uart_rxd_int;
wire uart_cts_int;
sync_signal #(
.WIDTH(2),
.N(2)
)
sync_signal_inst (
.clk(clk_390mhz_int),
.in({uart_rxd, uart_cts}),
.out({uart_rxd_int, uart_cts_int})
);
// SI570 I2C
wire i2c_scl_i;
wire i2c_scl_o = 1'b1;
wire i2c_scl_t = 1'b1;
wire i2c_sda_i;
wire i2c_sda_o = 1'b1;
wire i2c_sda_t = 1'b1;
assign i2c_scl_i = i2c_scl;
assign i2c_scl = i2c_scl_t ? 1'bz : i2c_scl_o;
assign i2c_sda_i = i2c_sda;
assign i2c_sda = i2c_sda_t ? 1'bz : i2c_sda_o;
// XGMII 10G PHY
assign qsfp1_modsell = 1'b0;
assign qsfp1_resetl = 1'b1;
assign qsfp1_lpmode = 1'b0;
wire qsfp1_tx_clk_1_int;
wire qsfp1_tx_rst_1_int;
wire [63:0] qsfp1_txd_1_int;
wire [7:0] qsfp1_txc_1_int;
wire qsfp1_rx_clk_1_int;
wire qsfp1_rx_rst_1_int;
wire [63:0] qsfp1_rxd_1_int;
wire [7:0] qsfp1_rxc_1_int;
wire qsfp1_tx_clk_2_int;
wire qsfp1_tx_rst_2_int;
wire [63:0] qsfp1_txd_2_int;
wire [7:0] qsfp1_txc_2_int;
wire qsfp1_rx_clk_2_int;
wire qsfp1_rx_rst_2_int;
wire [63:0] qsfp1_rxd_2_int;
wire [7:0] qsfp1_rxc_2_int;
wire qsfp1_tx_clk_3_int;
wire qsfp1_tx_rst_3_int;
wire [63:0] qsfp1_txd_3_int;
wire [7:0] qsfp1_txc_3_int;
wire qsfp1_rx_clk_3_int;
wire qsfp1_rx_rst_3_int;
wire [63:0] qsfp1_rxd_3_int;
wire [7:0] qsfp1_rxc_3_int;
wire qsfp1_tx_clk_4_int;
wire qsfp1_tx_rst_4_int;
wire [63:0] qsfp1_txd_4_int;
wire [7:0] qsfp1_txc_4_int;
wire qsfp1_rx_clk_4_int;
wire qsfp1_rx_rst_4_int;
wire [63:0] qsfp1_rxd_4_int;
wire [7:0] qsfp1_rxc_4_int;
assign qsfp2_modsell = 1'b0;
assign qsfp2_resetl = 1'b1;
assign qsfp2_lpmode = 1'b0;
wire qsfp2_tx_clk_1_int;
wire qsfp2_tx_rst_1_int;
wire [63:0] qsfp2_txd_1_int;
wire [7:0] qsfp2_txc_1_int;
wire qsfp2_rx_clk_1_int;
wire qsfp2_rx_rst_1_int;
wire [63:0] qsfp2_rxd_1_int;
wire [7:0] qsfp2_rxc_1_int;
wire qsfp2_tx_clk_2_int;
wire qsfp2_tx_rst_2_int;
wire [63:0] qsfp2_txd_2_int;
wire [7:0] qsfp2_txc_2_int;
wire qsfp2_rx_clk_2_int;
wire qsfp2_rx_rst_2_int;
wire [63:0] qsfp2_rxd_2_int;
wire [7:0] qsfp2_rxc_2_int;
wire qsfp2_tx_clk_3_int;
wire qsfp2_tx_rst_3_int;
wire [63:0] qsfp2_txd_3_int;
wire [7:0] qsfp2_txc_3_int;
wire qsfp2_rx_clk_3_int;
wire qsfp2_rx_rst_3_int;
wire [63:0] qsfp2_rxd_3_int;
wire [7:0] qsfp2_rxc_3_int;
wire qsfp2_tx_clk_4_int;
wire qsfp2_tx_rst_4_int;
wire [63:0] qsfp2_txd_4_int;
wire [7:0] qsfp2_txc_4_int;
wire qsfp2_rx_clk_4_int;
wire qsfp2_rx_rst_4_int;
wire [63:0] qsfp2_rxd_4_int;
wire [7:0] qsfp2_rxc_4_int;
wire qsfp1_rx_block_lock_1;
wire qsfp1_rx_block_lock_2;
wire qsfp1_rx_block_lock_3;
wire qsfp1_rx_block_lock_4;
wire qsfp2_rx_block_lock_1;
wire qsfp2_rx_block_lock_2;
wire qsfp2_rx_block_lock_3;
wire qsfp2_rx_block_lock_4;
wire qsfp1_mgt_refclk_0;
wire [7:0] gt_txclkout;
wire gt_txusrclk;
wire [7:0] gt_rxclkout;
wire [7:0] gt_rxusrclk;
wire gt_reset_tx_done;
wire gt_reset_rx_done;
wire [7:0] gt_txprgdivresetdone;
wire [7:0] gt_txpmaresetdone;
wire [7:0] gt_rxprgdivresetdone;
wire [7:0] gt_rxpmaresetdone;
wire gt_tx_reset = ~((&gt_txprgdivresetdone) & (&gt_txpmaresetdone));
wire gt_rx_reset = ~&gt_rxpmaresetdone;
reg gt_userclk_tx_active = 1'b0;
reg [7:0] gt_userclk_rx_active = 1'b0;
IBUFDS_GTE4 ibufds_gte4_qsfp1_mgt_refclk_0_inst (
.I (qsfp1_mgt_refclk_0_p),
.IB (qsfp1_mgt_refclk_0_n),
.CEB (1'b0),
.O (qsfp1_mgt_refclk_0),
.ODIV2 ()
);
BUFG_GT bufg_gt_tx_usrclk_inst (
.CE (1'b1),
.CEMASK (1'b0),
.CLR (gt_tx_reset),
.CLRMASK (1'b0),
.DIV (3'd0),
.I (gt_txclkout[0]),
.O (gt_txusrclk)
);
assign clk_390mhz_int = gt_txusrclk;
always @(posedge gt_txusrclk, posedge gt_tx_reset) begin
if (gt_tx_reset) begin
gt_userclk_tx_active <= 1'b0;
end else begin
gt_userclk_tx_active <= 1'b1;
end
end
genvar n;
generate
for (n = 0; n < 8; n = n + 1) begin
BUFG_GT bufg_gt_rx_usrclk_inst (
.CE (1'b1),
.CEMASK (1'b0),
.CLR (gt_rx_reset),
.CLRMASK (1'b0),
.DIV (3'd0),
.I (gt_rxclkout[n]),
.O (gt_rxusrclk[n])
);
always @(posedge gt_rxusrclk[n], posedge gt_rx_reset) begin
if (gt_rx_reset) begin
gt_userclk_rx_active[n] <= 1'b0;
end else begin
gt_userclk_rx_active[n] <= 1'b1;
end
end
end
endgenerate
sync_reset #(
.N(4)
)
sync_reset_390mhz_inst (
.clk(clk_390mhz_int),
.rst(~gt_reset_tx_done),
.out(rst_390mhz_int)
);
wire [5:0] qsfp1_gt_txheader_1;
wire [63:0] qsfp1_gt_txdata_1;
wire qsfp1_gt_rxgearboxslip_1;
wire [5:0] qsfp1_gt_rxheader_1;
wire [1:0] qsfp1_gt_rxheadervalid_1;
wire [63:0] qsfp1_gt_rxdata_1;
wire [1:0] qsfp1_gt_rxdatavalid_1;
wire [5:0] qsfp1_gt_txheader_2;
wire [63:0] qsfp1_gt_txdata_2;
wire qsfp1_gt_rxgearboxslip_2;
wire [5:0] qsfp1_gt_rxheader_2;
wire [1:0] qsfp1_gt_rxheadervalid_2;
wire [63:0] qsfp1_gt_rxdata_2;
wire [1:0] qsfp1_gt_rxdatavalid_2;
wire [5:0] qsfp1_gt_txheader_3;
wire [63:0] qsfp1_gt_txdata_3;
wire qsfp1_gt_rxgearboxslip_3;
wire [5:0] qsfp1_gt_rxheader_3;
wire [1:0] qsfp1_gt_rxheadervalid_3;
wire [63:0] qsfp1_gt_rxdata_3;
wire [1:0] qsfp1_gt_rxdatavalid_3;
wire [5:0] qsfp1_gt_txheader_4;
wire [63:0] qsfp1_gt_txdata_4;
wire qsfp1_gt_rxgearboxslip_4;
wire [5:0] qsfp1_gt_rxheader_4;
wire [1:0] qsfp1_gt_rxheadervalid_4;
wire [63:0] qsfp1_gt_rxdata_4;
wire [1:0] qsfp1_gt_rxdatavalid_4;
wire [5:0] qsfp2_gt_txheader_1;
wire [63:0] qsfp2_gt_txdata_1;
wire qsfp2_gt_rxgearboxslip_1;
wire [5:0] qsfp2_gt_rxheader_1;
wire [1:0] qsfp2_gt_rxheadervalid_1;
wire [63:0] qsfp2_gt_rxdata_1;
wire [1:0] qsfp2_gt_rxdatavalid_1;
wire [5:0] qsfp2_gt_txheader_2;
wire [63:0] qsfp2_gt_txdata_2;
wire qsfp2_gt_rxgearboxslip_2;
wire [5:0] qsfp2_gt_rxheader_2;
wire [1:0] qsfp2_gt_rxheadervalid_2;
wire [63:0] qsfp2_gt_rxdata_2;
wire [1:0] qsfp2_gt_rxdatavalid_2;
wire [5:0] qsfp2_gt_txheader_3;
wire [63:0] qsfp2_gt_txdata_3;
wire qsfp2_gt_rxgearboxslip_3;
wire [5:0] qsfp2_gt_rxheader_3;
wire [1:0] qsfp2_gt_rxheadervalid_3;
wire [63:0] qsfp2_gt_rxdata_3;
wire [1:0] qsfp2_gt_rxdatavalid_3;
wire [5:0] qsfp2_gt_txheader_4;
wire [63:0] qsfp2_gt_txdata_4;
wire qsfp2_gt_rxgearboxslip_4;
wire [5:0] qsfp2_gt_rxheader_4;
wire [1:0] qsfp2_gt_rxheadervalid_4;
wire [63:0] qsfp2_gt_rxdata_4;
wire [1:0] qsfp2_gt_rxdatavalid_4;
gtwizard_ultrascale_0
qsfp_gty_inst (
.gtwiz_userclk_tx_active_in(&gt_userclk_tx_active),
.gtwiz_userclk_rx_active_in(&gt_userclk_rx_active),
.gtwiz_reset_clk_freerun_in(clk_125mhz_int),
.gtwiz_reset_all_in(rst_125mhz_int),
.gtwiz_reset_tx_pll_and_datapath_in(1'b0),
.gtwiz_reset_tx_datapath_in(1'b0),
.gtwiz_reset_rx_pll_and_datapath_in(1'b0),
.gtwiz_reset_rx_datapath_in(1'b0),
.gtwiz_reset_rx_cdr_stable_out(),
.gtwiz_reset_tx_done_out(gt_reset_tx_done),
.gtwiz_reset_rx_done_out(gt_reset_rx_done),
.gtrefclk00_in({2{qsfp1_mgt_refclk_0}}),
.qpll0outclk_out(),
.qpll0outrefclk_out(),
.gtyrxn_in({qsfp2_rx4_n, qsfp2_rx3_n, qsfp2_rx2_n, qsfp2_rx1_n, qsfp1_rx4_n, qsfp1_rx3_n, qsfp1_rx2_n, qsfp1_rx1_n}),
.gtyrxp_in({qsfp2_rx4_p, qsfp2_rx3_p, qsfp2_rx2_p, qsfp2_rx1_p, qsfp1_rx4_p, qsfp1_rx3_p, qsfp1_rx2_p, qsfp1_rx1_p}),
.rxusrclk_in(gt_rxusrclk),
.rxusrclk2_in(gt_rxusrclk),
.gtwiz_userdata_tx_in({qsfp2_gt_txdata_4, qsfp2_gt_txdata_3, qsfp2_gt_txdata_2, qsfp2_gt_txdata_1, qsfp1_gt_txdata_4, qsfp1_gt_txdata_3, qsfp1_gt_txdata_2, qsfp1_gt_txdata_1}),
.txheader_in({qsfp2_gt_txheader_4, qsfp2_gt_txheader_3, qsfp2_gt_txheader_2, qsfp2_gt_txheader_1, qsfp1_gt_txheader_4, qsfp1_gt_txheader_3, qsfp1_gt_txheader_2, qsfp1_gt_txheader_1}),
.txsequence_in({8{1'b0}}),
.txusrclk_in({8{gt_txusrclk}}),
.txusrclk2_in({8{gt_txusrclk}}),
.gtpowergood_out(),
.gtytxn_out({qsfp2_tx4_n, qsfp2_tx3_n, qsfp2_tx2_n, qsfp2_tx1_n, qsfp1_tx4_n, qsfp1_tx3_n, qsfp1_tx2_n, qsfp1_tx1_n}),
.gtytxp_out({qsfp2_tx4_p, qsfp2_tx3_p, qsfp2_tx2_p, qsfp2_tx1_p, qsfp1_tx4_p, qsfp1_tx3_p, qsfp1_tx2_p, qsfp1_tx1_p}),
.rxgearboxslip_in({qsfp2_gt_rxgearboxslip_4, qsfp2_gt_rxgearboxslip_3, qsfp2_gt_rxgearboxslip_2, qsfp2_gt_rxgearboxslip_1, qsfp1_gt_rxgearboxslip_4, qsfp1_gt_rxgearboxslip_3, qsfp1_gt_rxgearboxslip_2, qsfp1_gt_rxgearboxslip_1}),
.gtwiz_userdata_rx_out({qsfp2_gt_rxdata_4, qsfp2_gt_rxdata_3, qsfp2_gt_rxdata_2, qsfp2_gt_rxdata_1, qsfp1_gt_rxdata_4, qsfp1_gt_rxdata_3, qsfp1_gt_rxdata_2, qsfp1_gt_rxdata_1}),
.rxdatavalid_out({qsfp2_gt_rxdatavalid_4, qsfp2_gt_rxdatavalid_3, qsfp2_gt_rxdatavalid_2, qsfp2_gt_rxdatavalid_1, qsfp1_gt_rxdatavalid_4, qsfp1_gt_rxdatavalid_3, qsfp1_gt_rxdatavalid_2, qsfp1_gt_rxdatavalid_1}),
.rxheader_out({qsfp2_gt_rxheader_4, qsfp2_gt_rxheader_3, qsfp2_gt_rxheader_2, qsfp2_gt_rxheader_1, qsfp1_gt_rxheader_4, qsfp1_gt_rxheader_3, qsfp1_gt_rxheader_2, qsfp1_gt_rxheader_1}),
.rxheadervalid_out({qsfp2_gt_rxheadervalid_4, qsfp2_gt_rxheadervalid_3, qsfp2_gt_rxheadervalid_2, qsfp2_gt_rxheadervalid_1, qsfp1_gt_rxheadervalid_4, qsfp1_gt_rxheadervalid_3, qsfp1_gt_rxheadervalid_2, qsfp1_gt_rxheadervalid_1}),
.rxoutclk_out(gt_rxclkout),
.rxpmaresetdone_out(gt_rxpmaresetdone),
.rxprgdivresetdone_out(gt_rxprgdivresetdone),
.rxstartofseq_out(),
.txoutclk_out(gt_txclkout),
.txpmaresetdone_out(gt_txpmaresetdone),
.txprgdivresetdone_out(gt_txprgdivresetdone)
);
assign qsfp1_tx_clk_1_int = clk_390mhz_int;
assign qsfp1_tx_rst_1_int = rst_390mhz_int;
assign qsfp1_rx_clk_1_int = gt_rxusrclk[0];
sync_reset #(
.N(4)
)
qsfp1_rx_rst_1_reset_sync_inst (
.clk(qsfp1_rx_clk_1_int),
.rst(~gt_reset_rx_done),
.out(qsfp1_rx_rst_1_int)
);
eth_phy_10g #(
.BIT_REVERSE(1),
.TX_SERDES_PIPELINE(2),
.RX_SERDES_PIPELINE(2),
.COUNT_125US(125000/2.56)
)
qsfp1_phy_1_inst (
.tx_clk(qsfp1_tx_clk_1_int),
.tx_rst(qsfp1_tx_rst_1_int),
.rx_clk(qsfp1_rx_clk_1_int),
.rx_rst(qsfp1_rx_rst_1_int),
.xgmii_txd(qsfp1_txd_1_int),
.xgmii_txc(qsfp1_txc_1_int),
.xgmii_rxd(qsfp1_rxd_1_int),
.xgmii_rxc(qsfp1_rxc_1_int),
.serdes_tx_data(qsfp1_gt_txdata_1),
.serdes_tx_hdr(qsfp1_gt_txheader_1),
.serdes_rx_data(qsfp1_gt_rxdata_1),
.serdes_rx_hdr(qsfp1_gt_rxheader_1),
.serdes_rx_bitslip(qsfp1_gt_rxgearboxslip_1),
.rx_block_lock(qsfp1_rx_block_lock_1),
.rx_high_ber()
);
assign qsfp1_tx_clk_2_int = clk_390mhz_int;
assign qsfp1_tx_rst_2_int = rst_390mhz_int;
assign qsfp1_rx_clk_2_int = gt_rxusrclk[1];
sync_reset #(
.N(4)
)
qsfp1_rx_rst_2_reset_sync_inst (
.clk(qsfp1_rx_clk_2_int),
.rst(~gt_reset_rx_done),
.out(qsfp1_rx_rst_2_int)
);
eth_phy_10g #(
.BIT_REVERSE(1),
.TX_SERDES_PIPELINE(2),
.RX_SERDES_PIPELINE(2),
.COUNT_125US(125000/2.56)
)
qsfp1_phy_2_inst (
.tx_clk(qsfp1_tx_clk_2_int),
.tx_rst(qsfp1_tx_rst_2_int),
.rx_clk(qsfp1_rx_clk_2_int),
.rx_rst(qsfp1_rx_rst_2_int),
.xgmii_txd(qsfp1_txd_2_int),
.xgmii_txc(qsfp1_txc_2_int),
.xgmii_rxd(qsfp1_rxd_2_int),
.xgmii_rxc(qsfp1_rxc_2_int),
.serdes_tx_data(qsfp1_gt_txdata_2),
.serdes_tx_hdr(qsfp1_gt_txheader_2),
.serdes_rx_data(qsfp1_gt_rxdata_2),
.serdes_rx_hdr(qsfp1_gt_rxheader_2),
.serdes_rx_bitslip(qsfp1_gt_rxgearboxslip_2),
.rx_block_lock(qsfp1_rx_block_lock_2),
.rx_high_ber()
);
assign qsfp1_tx_clk_3_int = clk_390mhz_int;
assign qsfp1_tx_rst_3_int = rst_390mhz_int;
assign qsfp1_rx_clk_3_int = gt_rxusrclk[2];
sync_reset #(
.N(4)
)
qsfp1_rx_rst_3_reset_sync_inst (
.clk(qsfp1_rx_clk_3_int),
.rst(~gt_reset_rx_done),
.out(qsfp1_rx_rst_3_int)
);
eth_phy_10g #(
.BIT_REVERSE(1),
.TX_SERDES_PIPELINE(2),
.RX_SERDES_PIPELINE(2),
.COUNT_125US(125000/2.56)
)
qsfp1_phy_3_inst (
.tx_clk(qsfp1_tx_clk_3_int),
.tx_rst(qsfp1_tx_rst_3_int),
.rx_clk(qsfp1_rx_clk_3_int),
.rx_rst(qsfp1_rx_rst_3_int),
.xgmii_txd(qsfp1_txd_3_int),
.xgmii_txc(qsfp1_txc_3_int),
.xgmii_rxd(qsfp1_rxd_3_int),
.xgmii_rxc(qsfp1_rxc_3_int),
.serdes_tx_data(qsfp1_gt_txdata_3),
.serdes_tx_hdr(qsfp1_gt_txheader_3),
.serdes_rx_data(qsfp1_gt_rxdata_3),
.serdes_rx_hdr(qsfp1_gt_rxheader_3),
.serdes_rx_bitslip(qsfp1_gt_rxgearboxslip_3),
.rx_block_lock(qsfp1_rx_block_lock_3),
.rx_high_ber()
);
assign qsfp1_tx_clk_4_int = clk_390mhz_int;
assign qsfp1_tx_rst_4_int = rst_390mhz_int;
assign qsfp1_rx_clk_4_int = gt_rxusrclk[3];
sync_reset #(
.N(4)
)
qsfp1_rx_rst_4_reset_sync_inst (
.clk(qsfp1_rx_clk_4_int),
.rst(~gt_reset_rx_done),
.out(qsfp1_rx_rst_4_int)
);
eth_phy_10g #(
.BIT_REVERSE(1),
.TX_SERDES_PIPELINE(2),
.RX_SERDES_PIPELINE(2),
.COUNT_125US(125000/2.56)
)
qsfp1_phy_4_inst (
.tx_clk(qsfp1_tx_clk_4_int),
.tx_rst(qsfp1_tx_rst_4_int),
.rx_clk(qsfp1_rx_clk_4_int),
.rx_rst(qsfp1_rx_rst_4_int),
.xgmii_txd(qsfp1_txd_4_int),
.xgmii_txc(qsfp1_txc_4_int),
.xgmii_rxd(qsfp1_rxd_4_int),
.xgmii_rxc(qsfp1_rxc_4_int),
.serdes_tx_data(qsfp1_gt_txdata_4),
.serdes_tx_hdr(qsfp1_gt_txheader_4),
.serdes_rx_data(qsfp1_gt_rxdata_4),
.serdes_rx_hdr(qsfp1_gt_rxheader_4),
.serdes_rx_bitslip(qsfp1_gt_rxgearboxslip_4),
.rx_block_lock(qsfp1_rx_block_lock_4),
.rx_high_ber()
);
assign qsfp2_tx_clk_1_int = clk_390mhz_int;
assign qsfp2_tx_rst_1_int = rst_390mhz_int;
assign qsfp2_rx_clk_1_int = gt_rxusrclk[4];
sync_reset #(
.N(4)
)
qsfp2_rx_rst_1_reset_sync_inst (
.clk(qsfp2_rx_clk_1_int),
.rst(~gt_reset_rx_done),
.out(qsfp2_rx_rst_1_int)
);
eth_phy_10g #(
.BIT_REVERSE(1),
.TX_SERDES_PIPELINE(2),
.RX_SERDES_PIPELINE(2),
.COUNT_125US(125000/2.56)
)
qsfp2_phy_1_inst (
.tx_clk(qsfp2_tx_clk_1_int),
.tx_rst(qsfp2_tx_rst_1_int),
.rx_clk(qsfp2_rx_clk_1_int),
.rx_rst(qsfp2_rx_rst_1_int),
.xgmii_txd(qsfp2_txd_1_int),
.xgmii_txc(qsfp2_txc_1_int),
.xgmii_rxd(qsfp2_rxd_1_int),
.xgmii_rxc(qsfp2_rxc_1_int),
.serdes_tx_data(qsfp2_gt_txdata_1),
.serdes_tx_hdr(qsfp2_gt_txheader_1),
.serdes_rx_data(qsfp2_gt_rxdata_1),
.serdes_rx_hdr(qsfp2_gt_rxheader_1),
.serdes_rx_bitslip(qsfp2_gt_rxgearboxslip_1),
.rx_block_lock(qsfp2_rx_block_lock_1),
.rx_high_ber()
);
assign qsfp2_tx_clk_2_int = clk_390mhz_int;
assign qsfp2_tx_rst_2_int = rst_390mhz_int;
assign qsfp2_rx_clk_2_int = gt_rxusrclk[5];
sync_reset #(
.N(4)
)
qsfp2_rx_rst_2_reset_sync_inst (
.clk(qsfp2_rx_clk_2_int),
.rst(~gt_reset_rx_done),
.out(qsfp2_rx_rst_2_int)
);
eth_phy_10g #(
.BIT_REVERSE(1),
.TX_SERDES_PIPELINE(2),
.RX_SERDES_PIPELINE(2),
.COUNT_125US(125000/2.56)
)
qsfp2_phy_2_inst (
.tx_clk(qsfp2_tx_clk_2_int),
.tx_rst(qsfp2_tx_rst_2_int),
.rx_clk(qsfp2_rx_clk_2_int),
.rx_rst(qsfp2_rx_rst_2_int),
.xgmii_txd(qsfp2_txd_2_int),
.xgmii_txc(qsfp2_txc_2_int),
.xgmii_rxd(qsfp2_rxd_2_int),
.xgmii_rxc(qsfp2_rxc_2_int),
.serdes_tx_data(qsfp2_gt_txdata_2),
.serdes_tx_hdr(qsfp2_gt_txheader_2),
.serdes_rx_data(qsfp2_gt_rxdata_2),
.serdes_rx_hdr(qsfp2_gt_rxheader_2),
.serdes_rx_bitslip(qsfp2_gt_rxgearboxslip_2),
.rx_block_lock(qsfp2_rx_block_lock_2),
.rx_high_ber()
);
assign qsfp2_tx_clk_3_int = clk_390mhz_int;
assign qsfp2_tx_rst_3_int = rst_390mhz_int;
assign qsfp2_rx_clk_3_int = gt_rxusrclk[6];
sync_reset #(
.N(4)
)
qsfp2_rx_rst_3_reset_sync_inst (
.clk(qsfp2_rx_clk_3_int),
.rst(~gt_reset_rx_done),
.out(qsfp2_rx_rst_3_int)
);
eth_phy_10g #(
.BIT_REVERSE(1),
.TX_SERDES_PIPELINE(2),
.RX_SERDES_PIPELINE(2),
.COUNT_125US(125000/2.56)
)
qsfp2_phy_3_inst (
.tx_clk(qsfp2_tx_clk_3_int),
.tx_rst(qsfp2_tx_rst_3_int),
.rx_clk(qsfp2_rx_clk_3_int),
.rx_rst(qsfp2_rx_rst_3_int),
.xgmii_txd(qsfp2_txd_3_int),
.xgmii_txc(qsfp2_txc_3_int),
.xgmii_rxd(qsfp2_rxd_3_int),
.xgmii_rxc(qsfp2_rxc_3_int),
.serdes_tx_data(qsfp2_gt_txdata_3),
.serdes_tx_hdr(qsfp2_gt_txheader_3),
.serdes_rx_data(qsfp2_gt_rxdata_3),
.serdes_rx_hdr(qsfp2_gt_rxheader_3),
.serdes_rx_bitslip(qsfp2_gt_rxgearboxslip_3),
.rx_block_lock(qsfp2_rx_block_lock_3),
.rx_high_ber()
);
assign qsfp2_tx_clk_4_int = clk_390mhz_int;
assign qsfp2_tx_rst_4_int = rst_390mhz_int;
assign qsfp2_rx_clk_4_int = gt_rxusrclk[7];
sync_reset #(
.N(4)
)
qsfp2_rx_rst_4_reset_sync_inst (
.clk(qsfp2_rx_clk_4_int),
.rst(~gt_reset_rx_done),
.out(qsfp2_rx_rst_4_int)
);
eth_phy_10g #(
.BIT_REVERSE(1),
.TX_SERDES_PIPELINE(2),
.RX_SERDES_PIPELINE(2),
.COUNT_125US(125000/2.56)
)
qsfp2_phy_4_inst (
.tx_clk(qsfp2_tx_clk_4_int),
.tx_rst(qsfp2_tx_rst_4_int),
.rx_clk(qsfp2_rx_clk_4_int),
.rx_rst(qsfp2_rx_rst_4_int),
.xgmii_txd(qsfp2_txd_4_int),
.xgmii_txc(qsfp2_txc_4_int),
.xgmii_rxd(qsfp2_rxd_4_int),
.xgmii_rxc(qsfp2_rxc_4_int),
.serdes_tx_data(qsfp2_gt_txdata_4),
.serdes_tx_hdr(qsfp2_gt_txheader_4),
.serdes_rx_data(qsfp2_gt_rxdata_4),
.serdes_rx_hdr(qsfp2_gt_rxheader_4),
.serdes_rx_bitslip(qsfp2_gt_rxgearboxslip_4),
.rx_block_lock(qsfp2_rx_block_lock_4),
.rx_high_ber()
);
// SGMII interface to PHY
wire phy_gmii_clk_int;
wire phy_gmii_rst_int;
wire phy_gmii_clk_en_int;
wire [7:0] phy_gmii_txd_int;
wire phy_gmii_tx_en_int;
wire phy_gmii_tx_er_int;
wire [7:0] phy_gmii_rxd_int;
wire phy_gmii_rx_dv_int;
wire phy_gmii_rx_er_int;
wire [15:0] gig_eth_pcspma_status_vector;
wire gig_eth_pcspma_status_link_status = gig_eth_pcspma_status_vector[0];
wire gig_eth_pcspma_status_link_synchronization = gig_eth_pcspma_status_vector[1];
wire gig_eth_pcspma_status_rudi_c = gig_eth_pcspma_status_vector[2];
wire gig_eth_pcspma_status_rudi_i = gig_eth_pcspma_status_vector[3];
wire gig_eth_pcspma_status_rudi_invalid = gig_eth_pcspma_status_vector[4];
wire gig_eth_pcspma_status_rxdisperr = gig_eth_pcspma_status_vector[5];
wire gig_eth_pcspma_status_rxnotintable = gig_eth_pcspma_status_vector[6];
wire gig_eth_pcspma_status_phy_link_status = gig_eth_pcspma_status_vector[7];
wire [1:0] gig_eth_pcspma_status_remote_fault_encdg = gig_eth_pcspma_status_vector[9:8];
wire [1:0] gig_eth_pcspma_status_speed = gig_eth_pcspma_status_vector[11:10];
wire gig_eth_pcspma_status_duplex = gig_eth_pcspma_status_vector[12];
wire gig_eth_pcspma_status_remote_fault = gig_eth_pcspma_status_vector[13];
wire [1:0] gig_eth_pcspma_status_pause = gig_eth_pcspma_status_vector[15:14];
wire [4:0] gig_eth_pcspma_config_vector;
assign gig_eth_pcspma_config_vector[4] = 1'b1; // autonegotiation enable
assign gig_eth_pcspma_config_vector[3] = 1'b0; // isolate
assign gig_eth_pcspma_config_vector[2] = 1'b0; // power down
assign gig_eth_pcspma_config_vector[1] = 1'b0; // loopback enable
assign gig_eth_pcspma_config_vector[0] = 1'b0; // unidirectional enable
wire [15:0] gig_eth_pcspma_an_config_vector;
assign gig_eth_pcspma_an_config_vector[15] = 1'b1; // SGMII link status
assign gig_eth_pcspma_an_config_vector[14] = 1'b1; // SGMII Acknowledge
assign gig_eth_pcspma_an_config_vector[13:12] = 2'b01; // full duplex
assign gig_eth_pcspma_an_config_vector[11:10] = 2'b10; // SGMII speed
assign gig_eth_pcspma_an_config_vector[9] = 1'b0; // reserved
assign gig_eth_pcspma_an_config_vector[8:7] = 2'b00; // pause frames - SGMII reserved
assign gig_eth_pcspma_an_config_vector[6] = 1'b0; // reserved
assign gig_eth_pcspma_an_config_vector[5] = 1'b0; // full duplex - SGMII reserved
assign gig_eth_pcspma_an_config_vector[4:1] = 4'b0000; // reserved
assign gig_eth_pcspma_an_config_vector[0] = 1'b1; // SGMII
gig_ethernet_pcs_pma_0
eth_pcspma (
// SGMII
.txp_0 (phy_sgmii_tx_p),
.txn_0 (phy_sgmii_tx_n),
.rxp_0 (phy_sgmii_rx_p),
.rxn_0 (phy_sgmii_rx_n),
// Ref clock from PHY
.refclk625_p (phy_sgmii_clk_p),
.refclk625_n (phy_sgmii_clk_n),
// async reset
.reset (rst_125mhz_int),
// clock and reset outputs
.clk125_out (phy_gmii_clk_int),
.clk312_out (),
.rst_125_out (phy_gmii_rst_int),
.tx_logic_reset (),
.rx_logic_reset (),
.tx_locked (),
.rx_locked (),
.tx_pll_clk_out (),
.rx_pll_clk_out (),
// MAC clocking
.sgmii_clk_r_0 (),
.sgmii_clk_f_0 (),
.sgmii_clk_en_0 (phy_gmii_clk_en_int),
// Speed control
.speed_is_10_100_0 (gig_eth_pcspma_status_speed != 2'b10),
.speed_is_100_0 (gig_eth_pcspma_status_speed == 2'b01),
// Internal GMII
.gmii_txd_0 (phy_gmii_txd_int),
.gmii_tx_en_0 (phy_gmii_tx_en_int),
.gmii_tx_er_0 (phy_gmii_tx_er_int),
.gmii_rxd_0 (phy_gmii_rxd_int),
.gmii_rx_dv_0 (phy_gmii_rx_dv_int),
.gmii_rx_er_0 (phy_gmii_rx_er_int),
.gmii_isolate_0 (),
// Configuration
.configuration_vector_0 (gig_eth_pcspma_config_vector),
.an_interrupt_0 (),
.an_adv_config_vector_0 (gig_eth_pcspma_an_config_vector),
.an_restart_config_0 (1'b0),
// Status
.status_vector_0 (gig_eth_pcspma_status_vector),
.signal_detect_0 (1'b1),
// Cascade
.tx_bsc_rst_out (),
.rx_bsc_rst_out (),
.tx_bs_rst_out (),
.rx_bs_rst_out (),
.tx_rst_dly_out (),
.rx_rst_dly_out (),
.tx_bsc_en_vtc_out (),
.rx_bsc_en_vtc_out (),
.tx_bs_en_vtc_out (),
.rx_bs_en_vtc_out (),
.riu_clk_out (),
.riu_addr_out (),
.riu_wr_data_out (),
.riu_wr_en_out (),
.riu_nibble_sel_out (),
.riu_rddata_1 (16'b0),
.riu_valid_1 (1'b0),
.riu_prsnt_1 (1'b0),
.riu_rddata_2 (16'b0),
.riu_valid_2 (1'b0),
.riu_prsnt_2 (1'b0),
.riu_rddata_3 (16'b0),
.riu_valid_3 (1'b0),
.riu_prsnt_3 (1'b0),
.rx_btval_1 (),
.rx_btval_2 (),
.rx_btval_3 (),
.tx_dly_rdy_1 (1'b1),
.rx_dly_rdy_1 (1'b1),
.rx_vtc_rdy_1 (1'b1),
.tx_vtc_rdy_1 (1'b1),
.tx_dly_rdy_2 (1'b1),
.rx_dly_rdy_2 (1'b1),
.rx_vtc_rdy_2 (1'b1),
.tx_vtc_rdy_2 (1'b1),
.tx_dly_rdy_3 (1'b1),
.rx_dly_rdy_3 (1'b1),
.rx_vtc_rdy_3 (1'b1),
.tx_vtc_rdy_3 (1'b1),
.tx_rdclk_out ()
);
reg [19:0] delay_reg = 20'hfffff;
reg [4:0] mdio_cmd_phy_addr = 5'h03;
reg [4:0] mdio_cmd_reg_addr = 5'h00;
reg [15:0] mdio_cmd_data = 16'd0;
reg [1:0] mdio_cmd_opcode = 2'b01;
reg mdio_cmd_valid = 1'b0;
wire mdio_cmd_ready;
reg [3:0] state_reg = 0;
always @(posedge clk_125mhz_int) begin
if (rst_125mhz_int) begin
state_reg <= 0;
delay_reg <= 20'hfffff;
mdio_cmd_reg_addr <= 5'h00;
mdio_cmd_data <= 16'd0;
mdio_cmd_valid <= 1'b0;
end else begin
mdio_cmd_valid <= mdio_cmd_valid & !mdio_cmd_ready;
if (delay_reg > 0) begin
delay_reg <= delay_reg - 1;
end else if (!mdio_cmd_ready) begin
// wait for ready
state_reg <= state_reg;
end else begin
mdio_cmd_valid <= 1'b0;
case (state_reg)
// set SGMII autonegotiation timer to 11 ms
// write 0x0070 to CFG4 (0x0031)
4'd0: begin
// write to REGCR to load address
mdio_cmd_reg_addr <= 5'h0D;
mdio_cmd_data <= 16'h001F;
mdio_cmd_valid <= 1'b1;
state_reg <= 4'd1;
end
4'd1: begin
// write address of CFG4 to ADDAR
mdio_cmd_reg_addr <= 5'h0E;
mdio_cmd_data <= 16'h0031;
mdio_cmd_valid <= 1'b1;
state_reg <= 4'd2;
end
4'd2: begin
// write to REGCR to load data
mdio_cmd_reg_addr <= 5'h0D;
mdio_cmd_data <= 16'h401F;
mdio_cmd_valid <= 1'b1;
state_reg <= 4'd3;
end
4'd3: begin
// write data for CFG4 to ADDAR
mdio_cmd_reg_addr <= 5'h0E;
mdio_cmd_data <= 16'h0070;
mdio_cmd_valid <= 1'b1;
state_reg <= 4'd4;
end
// enable SGMII clock output
// write 0x4000 to SGMIICTL1 (0x00D3)
4'd4: begin
// write to REGCR to load address
mdio_cmd_reg_addr <= 5'h0D;
mdio_cmd_data <= 16'h001F;
mdio_cmd_valid <= 1'b1;
state_reg <= 4'd5;
end
4'd5: begin
// write address of SGMIICTL1 to ADDAR
mdio_cmd_reg_addr <= 5'h0E;
mdio_cmd_data <= 16'h00D3;
mdio_cmd_valid <= 1'b1;
state_reg <= 4'd6;
end
4'd6: begin
// write to REGCR to load data
mdio_cmd_reg_addr <= 5'h0D;
mdio_cmd_data <= 16'h401F;
mdio_cmd_valid <= 1'b1;
state_reg <= 4'd7;
end
4'd7: begin
// write data for SGMIICTL1 to ADDAR
mdio_cmd_reg_addr <= 5'h0E;
mdio_cmd_data <= 16'h4000;
mdio_cmd_valid <= 1'b1;
state_reg <= 4'd8;
end
// enable 10Mbps operation
// write 0x0015 to 10M_SGMII_CFG (0x016F)
4'd8: begin
// write to REGCR to load address
mdio_cmd_reg_addr <= 5'h0D;
mdio_cmd_data <= 16'h001F;
mdio_cmd_valid <= 1'b1;
state_reg <= 4'd9;
end
4'd9: begin
// write address of 10M_SGMII_CFG to ADDAR
mdio_cmd_reg_addr <= 5'h0E;
mdio_cmd_data <= 16'h016F;
mdio_cmd_valid <= 1'b1;
state_reg <= 4'd10;
end
4'd10: begin
// write to REGCR to load data
mdio_cmd_reg_addr <= 5'h0D;
mdio_cmd_data <= 16'h401F;
mdio_cmd_valid <= 1'b1;
state_reg <= 4'd11;
end
4'd11: begin
// write data for 10M_SGMII_CFG to ADDAR
mdio_cmd_reg_addr <= 5'h0E;
mdio_cmd_data <= 16'h0015;
mdio_cmd_valid <= 1'b1;
state_reg <= 4'd12;
end
4'd12: begin
// done
state_reg <= 4'd12;
end
endcase
end
end
end
wire mdc;
wire mdio_i;
wire mdio_o;
wire mdio_t;
mdio_master
mdio_master_inst (
.clk(clk_125mhz_int),
.rst(rst_125mhz_int),
.cmd_phy_addr(mdio_cmd_phy_addr),
.cmd_reg_addr(mdio_cmd_reg_addr),
.cmd_data(mdio_cmd_data),
.cmd_opcode(mdio_cmd_opcode),
.cmd_valid(mdio_cmd_valid),
.cmd_ready(mdio_cmd_ready),
.data_out(),
.data_out_valid(),
.data_out_ready(1'b1),
.mdc_o(mdc),
.mdio_i(mdio_i),
.mdio_o(mdio_o),
.mdio_t(mdio_t),
.busy(),
.prescale(8'd3)
);
assign phy_mdc = mdc;
assign mdio_i = phy_mdio;
assign phy_mdio = mdio_t ? 1'bz : mdio_o;
wire [7:0] led_int;
assign led = sw[0] ? {qsfp2_rx_block_lock_4, qsfp2_rx_block_lock_3, qsfp2_rx_block_lock_2, qsfp2_rx_block_lock_1, qsfp1_rx_block_lock_4, qsfp1_rx_block_lock_3, qsfp1_rx_block_lock_2, qsfp1_rx_block_lock_1} : led_int;
fpga_core
core_inst (
/*
* Clock: 390.625 MHz
* Synchronous reset
*/
.clk(clk_390mhz_int),
.rst(rst_390mhz_int),
/*
* GPIO
*/
.btnu(btnu_int),
.btnl(btnl_int),
.btnd(btnd_int),
.btnr(btnr_int),
.btnc(btnc_int),
.sw(sw_int),
.led(led_int),
/*
* Ethernet: QSFP28
*/
.qsfp1_tx_clk_1(qsfp1_tx_clk_1_int),
.qsfp1_tx_rst_1(qsfp1_tx_rst_1_int),
.qsfp1_txd_1(qsfp1_txd_1_int),
.qsfp1_txc_1(qsfp1_txc_1_int),
.qsfp1_rx_clk_1(qsfp1_rx_clk_1_int),
.qsfp1_rx_rst_1(qsfp1_rx_rst_1_int),
.qsfp1_rxd_1(qsfp1_rxd_1_int),
.qsfp1_rxc_1(qsfp1_rxc_1_int),
.qsfp1_tx_clk_2(qsfp1_tx_clk_2_int),
.qsfp1_tx_rst_2(qsfp1_tx_rst_2_int),
.qsfp1_txd_2(qsfp1_txd_2_int),
.qsfp1_txc_2(qsfp1_txc_2_int),
.qsfp1_rx_clk_2(qsfp1_rx_clk_2_int),
.qsfp1_rx_rst_2(qsfp1_rx_rst_2_int),
.qsfp1_rxd_2(qsfp1_rxd_2_int),
.qsfp1_rxc_2(qsfp1_rxc_2_int),
.qsfp1_tx_clk_3(qsfp1_tx_clk_3_int),
.qsfp1_tx_rst_3(qsfp1_tx_rst_3_int),
.qsfp1_txd_3(qsfp1_txd_3_int),
.qsfp1_txc_3(qsfp1_txc_3_int),
.qsfp1_rx_clk_3(qsfp1_rx_clk_3_int),
.qsfp1_rx_rst_3(qsfp1_rx_rst_3_int),
.qsfp1_rxd_3(qsfp1_rxd_3_int),
.qsfp1_rxc_3(qsfp1_rxc_3_int),
.qsfp1_tx_clk_4(qsfp1_tx_clk_4_int),
.qsfp1_tx_rst_4(qsfp1_tx_rst_4_int),
.qsfp1_txd_4(qsfp1_txd_4_int),
.qsfp1_txc_4(qsfp1_txc_4_int),
.qsfp1_rx_clk_4(qsfp1_rx_clk_4_int),
.qsfp1_rx_rst_4(qsfp1_rx_rst_4_int),
.qsfp1_rxd_4(qsfp1_rxd_4_int),
.qsfp1_rxc_4(qsfp1_rxc_4_int),
.qsfp2_tx_clk_1(qsfp2_tx_clk_1_int),
.qsfp2_tx_rst_1(qsfp2_tx_rst_1_int),
.qsfp2_txd_1(qsfp2_txd_1_int),
.qsfp2_txc_1(qsfp2_txc_1_int),
.qsfp2_rx_clk_1(qsfp2_rx_clk_1_int),
.qsfp2_rx_rst_1(qsfp2_rx_rst_1_int),
.qsfp2_rxd_1(qsfp2_rxd_1_int),
.qsfp2_rxc_1(qsfp2_rxc_1_int),
.qsfp2_tx_clk_2(qsfp2_tx_clk_2_int),
.qsfp2_tx_rst_2(qsfp2_tx_rst_2_int),
.qsfp2_txd_2(qsfp2_txd_2_int),
.qsfp2_txc_2(qsfp2_txc_2_int),
.qsfp2_rx_clk_2(qsfp2_rx_clk_2_int),
.qsfp2_rx_rst_2(qsfp2_rx_rst_2_int),
.qsfp2_rxd_2(qsfp2_rxd_2_int),
.qsfp2_rxc_2(qsfp2_rxc_2_int),
.qsfp2_tx_clk_3(qsfp2_tx_clk_3_int),
.qsfp2_tx_rst_3(qsfp2_tx_rst_3_int),
.qsfp2_txd_3(qsfp2_txd_3_int),
.qsfp2_txc_3(qsfp2_txc_3_int),
.qsfp2_rx_clk_3(qsfp2_rx_clk_3_int),
.qsfp2_rx_rst_3(qsfp2_rx_rst_3_int),
.qsfp2_rxd_3(qsfp2_rxd_3_int),
.qsfp2_rxc_3(qsfp2_rxc_3_int),
.qsfp2_tx_clk_4(qsfp2_tx_clk_4_int),
.qsfp2_tx_rst_4(qsfp2_tx_rst_4_int),
.qsfp2_txd_4(qsfp2_txd_4_int),
.qsfp2_txc_4(qsfp2_txc_4_int),
.qsfp2_rx_clk_4(qsfp2_rx_clk_4_int),
.qsfp2_rx_rst_4(qsfp2_rx_rst_4_int),
.qsfp2_rxd_4(qsfp2_rxd_4_int),
.qsfp2_rxc_4(qsfp2_rxc_4_int),
/*
* Ethernet: 1000BASE-T SGMII
*/
.phy_gmii_clk(phy_gmii_clk_int),
.phy_gmii_rst(phy_gmii_rst_int),
.phy_gmii_clk_en(phy_gmii_clk_en_int),
.phy_gmii_rxd(phy_gmii_rxd_int),
.phy_gmii_rx_dv(phy_gmii_rx_dv_int),
.phy_gmii_rx_er(phy_gmii_rx_er_int),
.phy_gmii_txd(phy_gmii_txd_int),
.phy_gmii_tx_en(phy_gmii_tx_en_int),
.phy_gmii_tx_er(phy_gmii_tx_er_int),
.phy_reset_n(phy_reset_n),
.phy_int_n(phy_int_n),
/*
* UART: 115200 bps, 8N1
*/
.uart_rxd(uart_rxd_int),
.uart_txd(uart_txd),
.uart_rts(uart_rts),
.uart_cts(uart_cts_int)
);
endmodule