1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_baser_tx_64.v
Alex Forencich 07aeae5c2f Rework lane swapping logic
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2022-07-25 15:06:09 -07:00

781 lines
26 KiB
Verilog

/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream 10GBASE-R frame transmitter (AXI in, 10GBASE-R out)
*/
module axis_baser_tx_64 #
(
parameter DATA_WIDTH = 64,
parameter KEEP_WIDTH = (DATA_WIDTH/8),
parameter HDR_WIDTH = 2,
parameter ENABLE_PADDING = 1,
parameter ENABLE_DIC = 1,
parameter MIN_FRAME_LENGTH = 64,
parameter PTP_PERIOD_NS = 4'h6,
parameter PTP_PERIOD_FNS = 16'h6666,
parameter PTP_TS_ENABLE = 0,
parameter PTP_TS_WIDTH = 96,
parameter PTP_TAG_ENABLE = PTP_TS_ENABLE,
parameter PTP_TAG_WIDTH = 16,
parameter USER_WIDTH = (PTP_TAG_ENABLE ? PTP_TAG_WIDTH : 0) + 1
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [DATA_WIDTH-1:0] s_axis_tdata,
input wire [KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [USER_WIDTH-1:0] s_axis_tuser,
/*
* 10GBASE-R encoded interface
*/
output wire [DATA_WIDTH-1:0] encoded_tx_data,
output wire [HDR_WIDTH-1:0] encoded_tx_hdr,
/*
* PTP
*/
input wire [PTP_TS_WIDTH-1:0] ptp_ts,
output wire [PTP_TS_WIDTH-1:0] m_axis_ptp_ts,
output wire [PTP_TAG_WIDTH-1:0] m_axis_ptp_ts_tag,
output wire m_axis_ptp_ts_valid,
/*
* Configuration
*/
input wire [7:0] ifg_delay,
/*
* Status
*/
output wire [1:0] start_packet,
output wire error_underflow
);
localparam EMPTY_WIDTH = $clog2(KEEP_WIDTH);
localparam MIN_LEN_WIDTH = $clog2(MIN_FRAME_LENGTH-4-KEEP_WIDTH+1);
// bus width assertions
initial begin
if (DATA_WIDTH != 64) begin
$error("Error: Interface width must be 64");
$finish;
end
if (KEEP_WIDTH * 8 != DATA_WIDTH) begin
$error("Error: Interface requires byte (8-bit) granularity");
$finish;
end
if (HDR_WIDTH != 2) begin
$error("Error: HDR_WIDTH must be 2");
$finish;
end
end
localparam [7:0]
ETH_PRE = 8'h55,
ETH_SFD = 8'hD5;
localparam [6:0]
CTRL_IDLE = 7'h00,
CTRL_LPI = 7'h06,
CTRL_ERROR = 7'h1e,
CTRL_RES_0 = 7'h2d,
CTRL_RES_1 = 7'h33,
CTRL_RES_2 = 7'h4b,
CTRL_RES_3 = 7'h55,
CTRL_RES_4 = 7'h66,
CTRL_RES_5 = 7'h78;
localparam [3:0]
O_SEQ_OS = 4'h0,
O_SIG_OS = 4'hf;
localparam [1:0]
SYNC_DATA = 2'b10,
SYNC_CTRL = 2'b01;
localparam [7:0]
BLOCK_TYPE_CTRL = 8'h1e, // C7 C6 C5 C4 C3 C2 C1 C0 BT
BLOCK_TYPE_OS_4 = 8'h2d, // D7 D6 D5 O4 C3 C2 C1 C0 BT
BLOCK_TYPE_START_4 = 8'h33, // D7 D6 D5 C3 C2 C1 C0 BT
BLOCK_TYPE_OS_START = 8'h66, // D7 D6 D5 O0 D3 D2 D1 BT
BLOCK_TYPE_OS_04 = 8'h55, // D7 D6 D5 O4 O0 D3 D2 D1 BT
BLOCK_TYPE_START_0 = 8'h78, // D7 D6 D5 D4 D3 D2 D1 BT
BLOCK_TYPE_OS_0 = 8'h4b, // C7 C6 C5 C4 O0 D3 D2 D1 BT
BLOCK_TYPE_TERM_0 = 8'h87, // C7 C6 C5 C4 C3 C2 C1 BT
BLOCK_TYPE_TERM_1 = 8'h99, // C7 C6 C5 C4 C3 C2 D0 BT
BLOCK_TYPE_TERM_2 = 8'haa, // C7 C6 C5 C4 C3 D1 D0 BT
BLOCK_TYPE_TERM_3 = 8'hb4, // C7 C6 C5 C4 D2 D1 D0 BT
BLOCK_TYPE_TERM_4 = 8'hcc, // C7 C6 C5 D3 D2 D1 D0 BT
BLOCK_TYPE_TERM_5 = 8'hd2, // C7 C6 D4 D3 D2 D1 D0 BT
BLOCK_TYPE_TERM_6 = 8'he1, // C7 D5 D4 D3 D2 D1 D0 BT
BLOCK_TYPE_TERM_7 = 8'hff; // D6 D5 D4 D3 D2 D1 D0 BT
localparam [3:0]
OUTPUT_TYPE_IDLE = 4'd0,
OUTPUT_TYPE_ERROR = 4'd1,
OUTPUT_TYPE_START_0 = 4'd2,
OUTPUT_TYPE_START_4 = 4'd3,
OUTPUT_TYPE_DATA = 4'd4,
OUTPUT_TYPE_TERM_0 = 4'd8,
OUTPUT_TYPE_TERM_1 = 4'd9,
OUTPUT_TYPE_TERM_2 = 4'd10,
OUTPUT_TYPE_TERM_3 = 4'd11,
OUTPUT_TYPE_TERM_4 = 4'd12,
OUTPUT_TYPE_TERM_5 = 4'd13,
OUTPUT_TYPE_TERM_6 = 4'd14,
OUTPUT_TYPE_TERM_7 = 4'd15;
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_PAYLOAD = 3'd1,
STATE_PAD = 3'd2,
STATE_FCS_1 = 3'd3,
STATE_FCS_2 = 3'd4,
STATE_IFG = 3'd5,
STATE_WAIT_END = 3'd6;
reg [2:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg swap_lanes_reg = 1'b0, swap_lanes_next;
reg [31:0] swap_data = 32'd0;
reg delay_type_valid = 1'b0;
reg [3:0] delay_type = OUTPUT_TYPE_IDLE;
reg [DATA_WIDTH-1:0] s_axis_tdata_masked;
reg [DATA_WIDTH-1:0] s_tdata_reg = 0, s_tdata_next;
reg [EMPTY_WIDTH-1:0] s_empty_reg = 0, s_empty_next;
reg [DATA_WIDTH-1:0] fcs_output_data_0;
reg [DATA_WIDTH-1:0] fcs_output_data_1;
reg [3:0] fcs_output_type_0;
reg [3:0] fcs_output_type_1;
reg [7:0] ifg_offset;
reg [MIN_LEN_WIDTH-1:0] frame_min_count_reg = 0, frame_min_count_next;
reg [7:0] ifg_count_reg = 8'd0, ifg_count_next;
reg [1:0] deficit_idle_count_reg = 2'd0, deficit_idle_count_next;
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
reg [PTP_TS_WIDTH-1:0] m_axis_ptp_ts_reg = 0, m_axis_ptp_ts_next;
reg [PTP_TAG_WIDTH-1:0] m_axis_ptp_ts_tag_reg = 0, m_axis_ptp_ts_tag_next;
reg m_axis_ptp_ts_valid_reg = 1'b0, m_axis_ptp_ts_valid_next;
reg m_axis_ptp_ts_valid_int_reg = 1'b0, m_axis_ptp_ts_valid_int_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
wire [31:0] crc_next[7:0];
reg [DATA_WIDTH-1:0] encoded_tx_data_reg = {{8{CTRL_IDLE}}, BLOCK_TYPE_CTRL};
reg [HDR_WIDTH-1:0] encoded_tx_hdr_reg = SYNC_CTRL;
reg [DATA_WIDTH-1:0] output_data_reg = {DATA_WIDTH{1'b0}}, output_data_next;
reg [3:0] output_type_reg = OUTPUT_TYPE_IDLE, output_type_next;
reg [1:0] start_packet_reg = 2'b00, start_packet_next;
reg error_underflow_reg = 1'b0, error_underflow_next;
assign s_axis_tready = s_axis_tready_reg;
assign encoded_tx_data = encoded_tx_data_reg;
assign encoded_tx_hdr = encoded_tx_hdr_reg;
assign m_axis_ptp_ts = PTP_TS_ENABLE ? m_axis_ptp_ts_reg : 0;
assign m_axis_ptp_ts_tag = PTP_TAG_ENABLE ? m_axis_ptp_ts_tag_reg : 0;
assign m_axis_ptp_ts_valid = PTP_TS_ENABLE || PTP_TAG_ENABLE ? m_axis_ptp_ts_valid_reg : 1'b0;
assign start_packet = start_packet_reg;
assign error_underflow = error_underflow_reg;
generate
genvar n;
for (n = 0; n < 8; n = n + 1) begin : crc
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8*(n+1)),
.STYLE("AUTO")
)
eth_crc (
.data_in(s_tdata_reg[0 +: 8*(n+1)]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next[n])
);
end
endgenerate
function [2:0] keep2empty;
input [7:0] k;
casez (k)
8'bzzzzzzz0: keep2empty = 3'd7;
8'bzzzzzz01: keep2empty = 3'd7;
8'bzzzzz011: keep2empty = 3'd6;
8'bzzzz0111: keep2empty = 3'd5;
8'bzzz01111: keep2empty = 3'd4;
8'bzz011111: keep2empty = 3'd3;
8'bz0111111: keep2empty = 3'd2;
8'b01111111: keep2empty = 3'd1;
8'b11111111: keep2empty = 3'd0;
endcase
endfunction
// Mask input data
integer j;
always @* begin
for (j = 0; j < 8; j = j + 1) begin
s_axis_tdata_masked[j*8 +: 8] = s_axis_tkeep[j] ? s_axis_tdata[j*8 +: 8] : 8'd0;
end
end
// FCS cycle calculation
always @* begin
casez (s_empty_reg)
3'd7: begin
fcs_output_data_0 = {24'd0, ~crc_next[0][31:0], s_tdata_reg[7:0]};
fcs_output_data_1 = 64'd0;
fcs_output_type_0 = OUTPUT_TYPE_TERM_5;
fcs_output_type_1 = OUTPUT_TYPE_IDLE;
ifg_offset = 8'd3;
end
3'd6: begin
fcs_output_data_0 = {16'd0, ~crc_next[1][31:0], s_tdata_reg[15:0]};
fcs_output_data_1 = 64'd0;
fcs_output_type_0 = OUTPUT_TYPE_TERM_6;
fcs_output_type_1 = OUTPUT_TYPE_IDLE;
ifg_offset = 8'd2;
end
3'd5: begin
fcs_output_data_0 = {8'd0, ~crc_next[2][31:0], s_tdata_reg[23:0]};
fcs_output_data_1 = 64'd0;
fcs_output_type_0 = OUTPUT_TYPE_TERM_7;
fcs_output_type_1 = OUTPUT_TYPE_IDLE;
ifg_offset = 8'd1;
end
3'd4: begin
fcs_output_data_0 = {~crc_next[3][31:0], s_tdata_reg[31:0]};
fcs_output_data_1 = 64'd0;
fcs_output_type_0 = OUTPUT_TYPE_DATA;
fcs_output_type_1 = OUTPUT_TYPE_TERM_0;
ifg_offset = 8'd8;
end
3'd3: begin
fcs_output_data_0 = {~crc_next[4][23:0], s_tdata_reg[39:0]};
fcs_output_data_1 = {56'd0, ~crc_next[4][31:24]};
fcs_output_type_0 = OUTPUT_TYPE_DATA;
fcs_output_type_1 = OUTPUT_TYPE_TERM_1;
ifg_offset = 8'd7;
end
3'd2: begin
fcs_output_data_0 = {~crc_next[5][15:0], s_tdata_reg[47:0]};
fcs_output_data_1 = {48'd0, ~crc_next[5][31:16]};
fcs_output_type_0 = OUTPUT_TYPE_DATA;
fcs_output_type_1 = OUTPUT_TYPE_TERM_2;
ifg_offset = 8'd6;
end
3'd1: begin
fcs_output_data_0 = {~crc_next[6][7:0], s_tdata_reg[55:0]};
fcs_output_data_1 = {40'd0, ~crc_next[6][31:8]};
fcs_output_type_0 = OUTPUT_TYPE_DATA;
fcs_output_type_1 = OUTPUT_TYPE_TERM_3;
ifg_offset = 8'd5;
end
3'd0: begin
fcs_output_data_0 = s_tdata_reg;
fcs_output_data_1 = {32'd0, ~crc_next[7][31:0]};
fcs_output_type_0 = OUTPUT_TYPE_DATA;
fcs_output_type_1 = OUTPUT_TYPE_TERM_4;
ifg_offset = 8'd4;
end
endcase
end
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
swap_lanes_next = swap_lanes_reg;
frame_min_count_next = frame_min_count_reg;
ifg_count_next = ifg_count_reg;
deficit_idle_count_next = deficit_idle_count_reg;
s_axis_tready_next = 1'b0;
s_tdata_next = s_tdata_reg;
s_empty_next = s_empty_reg;
m_axis_ptp_ts_next = m_axis_ptp_ts_reg;
m_axis_ptp_ts_tag_next = m_axis_ptp_ts_tag_reg;
m_axis_ptp_ts_valid_next = 1'b0;
m_axis_ptp_ts_valid_int_next = 1'b0;
output_data_next = s_tdata_reg;
output_type_next = OUTPUT_TYPE_IDLE;
start_packet_next = 2'b00;
error_underflow_next = 1'b0;
if (m_axis_ptp_ts_valid_int_reg) begin
m_axis_ptp_ts_valid_next = 1'b1;
if (PTP_TS_WIDTH == 96 && $signed({1'b0, m_axis_ptp_ts_reg[45:16]}) - $signed(31'd1000000000) > 0) begin
// ns field rollover
m_axis_ptp_ts_next[45:16] = $signed({1'b0, m_axis_ptp_ts_reg[45:16]}) - $signed(31'd1000000000);
m_axis_ptp_ts_next[95:48] = m_axis_ptp_ts_reg[95:48] + 1;
end
end
case (state_reg)
STATE_IDLE: begin
// idle state - wait for data
frame_min_count_next = MIN_FRAME_LENGTH-4-KEEP_WIDTH;
reset_crc = 1'b1;
s_axis_tready_next = 1'b1;
output_data_next = s_tdata_reg;
output_type_next = OUTPUT_TYPE_IDLE;
s_tdata_next = s_axis_tdata_masked;
s_empty_next = keep2empty(s_axis_tkeep);
if (s_axis_tvalid) begin
// XGMII start and preamble
if (swap_lanes_reg) begin
// lanes swapped
if (PTP_TS_WIDTH == 96) begin
m_axis_ptp_ts_next[45:0] = ptp_ts[45:0] + (((PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS) * 3) >> 1);
m_axis_ptp_ts_next[95:48] = ptp_ts[95:48];
end else begin
m_axis_ptp_ts_next = ptp_ts + (((PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS) * 3) >> 1);
end
m_axis_ptp_ts_tag_next = s_axis_tuser >> 1;
m_axis_ptp_ts_valid_int_next = 1'b1;
start_packet_next = 2'b10;
end else begin
// lanes not swapped
if (PTP_TS_WIDTH == 96) begin
m_axis_ptp_ts_next[45:0] = ptp_ts[45:0] + (PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS);
m_axis_ptp_ts_next[95:48] = ptp_ts[95:48];
end else begin
m_axis_ptp_ts_next = ptp_ts + (PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS);
end
m_axis_ptp_ts_tag_next = s_axis_tuser >> 1;
m_axis_ptp_ts_valid_int_next = 1'b1;
start_packet_next = 2'b01;
end
output_data_next = {ETH_SFD, {7{ETH_PRE}}};
output_type_next = OUTPUT_TYPE_START_0;
s_axis_tready_next = 1'b1;
state_next = STATE_PAYLOAD;
end else begin
swap_lanes_next = 1'b0;
ifg_count_next = 8'd0;
deficit_idle_count_next = 2'd0;
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// transfer payload
update_crc = 1'b1;
s_axis_tready_next = 1'b1;
if (frame_min_count_reg > KEEP_WIDTH) begin
frame_min_count_next = frame_min_count_reg - KEEP_WIDTH;
end else begin
frame_min_count_next = 0;
end
output_data_next = s_tdata_reg;
output_type_next = OUTPUT_TYPE_DATA;
s_tdata_next = s_axis_tdata_masked;
s_empty_next = keep2empty(s_axis_tkeep);
if (s_axis_tvalid) begin
if (s_axis_tlast) begin
s_axis_tready_next = 1'b0;
if (s_axis_tuser[0]) begin
output_type_next = OUTPUT_TYPE_ERROR;
ifg_count_next = 8'd8;
state_next = STATE_IFG;
end else begin
s_axis_tready_next = 1'b0;
if (ENABLE_PADDING && frame_min_count_reg) begin
if (frame_min_count_reg > KEEP_WIDTH) begin
s_empty_next = 0;
state_next = STATE_PAD;
end else begin
if (keep2empty(s_axis_tkeep) > KEEP_WIDTH-frame_min_count_reg) begin
s_empty_next = KEEP_WIDTH-frame_min_count_reg;
end
state_next = STATE_FCS_1;
end
end else begin
state_next = STATE_FCS_1;
end
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
// tvalid deassert, fail frame
output_type_next = OUTPUT_TYPE_ERROR;
ifg_count_next = 8'd8;
error_underflow_next = 1'b1;
state_next = STATE_WAIT_END;
end
end
STATE_PAD: begin
// pad frame to MIN_FRAME_LENGTH
s_axis_tready_next = 1'b0;
output_data_next = s_tdata_reg;
output_type_next = OUTPUT_TYPE_DATA;
s_tdata_next = 64'd0;
s_empty_next = 0;
update_crc = 1'b1;
if (frame_min_count_reg > KEEP_WIDTH) begin
frame_min_count_next = frame_min_count_reg - KEEP_WIDTH;
state_next = STATE_PAD;
end else begin
frame_min_count_next = 0;
s_empty_next = KEEP_WIDTH-frame_min_count_reg;
state_next = STATE_FCS_1;
end
end
STATE_FCS_1: begin
// last cycle
s_axis_tready_next = 1'b0;
output_data_next = fcs_output_data_0;
output_type_next = fcs_output_type_0;
ifg_count_next = (ifg_delay > 8'd12 ? ifg_delay : 8'd12) - ifg_offset + (swap_lanes_reg ? 8'd4 : 8'd0) + deficit_idle_count_reg;
if (s_empty_reg <= 4) begin
state_next = STATE_FCS_2;
end else begin
state_next = STATE_IFG;
end
end
STATE_FCS_2: begin
// last cycle
s_axis_tready_next = 1'b0;
output_data_next = fcs_output_data_1;
output_type_next = fcs_output_type_1;
reset_crc = 1'b1;
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd7) begin
state_next = STATE_IFG;
end else begin
if (ifg_count_next >= 8'd4) begin
deficit_idle_count_next = ifg_count_next - 8'd4;
swap_lanes_next = 1'b1;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
swap_lanes_next = 1'b0;
end
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd4) begin
state_next = STATE_IFG;
end else begin
s_axis_tready_next = 1'b1;
swap_lanes_next = ifg_count_next != 0;
state_next = STATE_IDLE;
end
end
end
STATE_IFG: begin
// send IFG
if (ifg_count_reg > 8'd8) begin
ifg_count_next = ifg_count_reg - 8'd8;
end else begin
ifg_count_next = 8'd0;
end
reset_crc = 1'b1;
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd7) begin
state_next = STATE_IFG;
end else begin
if (ifg_count_next >= 8'd4) begin
deficit_idle_count_next = ifg_count_next - 8'd4;
swap_lanes_next = 1'b1;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
swap_lanes_next = 1'b0;
end
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd4) begin
state_next = STATE_IFG;
end else begin
s_axis_tready_next = 1'b1;
swap_lanes_next = ifg_count_next != 0;
state_next = STATE_IDLE;
end
end
end
STATE_WAIT_END: begin
// wait for end of frame
s_axis_tready_next = 1'b1;
if (ifg_count_reg > 8'd4) begin
ifg_count_next = ifg_count_reg - 8'd4;
end else begin
ifg_count_next = 8'd0;
end
reset_crc = 1'b1;
if (s_axis_tvalid) begin
if (s_axis_tlast) begin
s_axis_tready_next = 1'b0;
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd7) begin
state_next = STATE_IFG;
end else begin
if (ifg_count_next >= 8'd4) begin
deficit_idle_count_next = ifg_count_next - 8'd4;
swap_lanes_next = 1'b1;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
swap_lanes_next = 1'b0;
end
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd4) begin
state_next = STATE_IFG;
end else begin
s_axis_tready_next = 1'b1;
swap_lanes_next = ifg_count_next != 0;
state_next = STATE_IDLE;
end
end
end else begin
state_next = STATE_WAIT_END;
end
end else begin
state_next = STATE_WAIT_END;
end
end
endcase
end
always @(posedge clk) begin
state_reg <= state_next;
swap_lanes_reg <= swap_lanes_next;
ifg_count_reg <= ifg_count_next;
deficit_idle_count_reg <= deficit_idle_count_next;
s_tdata_reg <= s_tdata_next;
s_empty_reg <= s_empty_next;
s_axis_tready_reg <= s_axis_tready_next;
m_axis_ptp_ts_reg <= m_axis_ptp_ts_next;
m_axis_ptp_ts_tag_reg <= m_axis_ptp_ts_tag_next;
m_axis_ptp_ts_valid_reg <= m_axis_ptp_ts_valid_next;
m_axis_ptp_ts_valid_int_reg <= m_axis_ptp_ts_valid_int_next;
start_packet_reg <= start_packet_next;
error_underflow_reg <= error_underflow_next;
delay_type_valid <= 1'b0;
delay_type <= output_type_next ^ 4'd4;
swap_data <= output_data_next[63:32];
if (swap_lanes_reg) begin
output_data_reg <= {output_data_next[31:0], swap_data};
if (delay_type_valid) begin
output_type_reg <= delay_type;
end else if (output_type_next == OUTPUT_TYPE_START_0) begin
output_type_reg <= OUTPUT_TYPE_START_4;
end else if (output_type_next[3]) begin
// OUTPUT_TYPE_TERM_*
if (output_type_next[2]) begin
delay_type_valid <= 1'b1;
output_type_reg <= OUTPUT_TYPE_DATA;
end else begin
output_type_reg <= output_type_next ^ 4'd4;
end
end else begin
output_type_reg <= output_type_next;
end
end else begin
output_data_reg <= output_data_next;
output_type_reg <= output_type_next;
end
case (output_type_reg)
OUTPUT_TYPE_IDLE: begin
encoded_tx_data_reg <= {{8{CTRL_IDLE}}, BLOCK_TYPE_CTRL};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_ERROR: begin
encoded_tx_data_reg <= {{8{CTRL_ERROR}}, BLOCK_TYPE_CTRL};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_START_0: begin
encoded_tx_data_reg <= {output_data_reg[63:8], BLOCK_TYPE_START_0};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_START_4: begin
encoded_tx_data_reg <= {output_data_reg[63:40], 4'd0, {4{CTRL_IDLE}}, BLOCK_TYPE_START_4};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_DATA: begin
encoded_tx_data_reg <= output_data_reg;
encoded_tx_hdr_reg <= SYNC_DATA;
end
OUTPUT_TYPE_TERM_0: begin
encoded_tx_data_reg <= {{7{CTRL_IDLE}}, 7'd0, BLOCK_TYPE_TERM_0};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_TERM_1: begin
encoded_tx_data_reg <= {{6{CTRL_IDLE}}, 6'd0, output_data_reg[7:0], BLOCK_TYPE_TERM_1};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_TERM_2: begin
encoded_tx_data_reg <= {{5{CTRL_IDLE}}, 5'd0, output_data_reg[15:0], BLOCK_TYPE_TERM_2};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_TERM_3: begin
encoded_tx_data_reg <= {{4{CTRL_IDLE}}, 4'd0, output_data_reg[23:0], BLOCK_TYPE_TERM_3};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_TERM_4: begin
encoded_tx_data_reg <= {{3{CTRL_IDLE}}, 3'd0, output_data_reg[31:0], BLOCK_TYPE_TERM_4};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_TERM_5: begin
encoded_tx_data_reg <= {{2{CTRL_IDLE}}, 2'd0, output_data_reg[39:0], BLOCK_TYPE_TERM_5};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_TERM_6: begin
encoded_tx_data_reg <= {{1{CTRL_IDLE}}, 1'd0, output_data_reg[47:0], BLOCK_TYPE_TERM_6};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
OUTPUT_TYPE_TERM_7: begin
encoded_tx_data_reg <= {output_data_reg[55:0], BLOCK_TYPE_TERM_7};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
default: begin
encoded_tx_data_reg <= {{8{CTRL_ERROR}}, BLOCK_TYPE_CTRL};
encoded_tx_hdr_reg <= SYNC_CTRL;
end
endcase
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else if (update_crc) begin
crc_state <= crc_next[7];
end
if (rst) begin
state_reg <= STATE_IDLE;
swap_lanes_reg <= 1'b0;
ifg_count_reg <= 8'd0;
deficit_idle_count_reg <= 2'd0;
s_axis_tready_reg <= 1'b0;
m_axis_ptp_ts_valid_reg <= 1'b0;
m_axis_ptp_ts_valid_int_reg <= 1'b0;
encoded_tx_data_reg <= {{8{CTRL_IDLE}}, BLOCK_TYPE_CTRL};
encoded_tx_hdr_reg <= SYNC_CTRL;
output_data_reg <= {DATA_WIDTH{1'b0}};
output_type_reg <= OUTPUT_TYPE_IDLE;
start_packet_reg <= 2'b00;
error_underflow_reg <= 1'b0;
delay_type_valid <= 1'b0;
delay_type <= OUTPUT_TYPE_IDLE;
end
end
endmodule
`resetall