1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_async_fifo.v
2015-11-07 01:15:11 -08:00

225 lines
7.0 KiB
Verilog

/*
Copyright (c) 2014-2015 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream asynchronous FIFO
*/
module axis_async_fifo #
(
parameter ADDR_WIDTH = 12,
parameter DATA_WIDTH = 8
)
(
/*
* Common asynchronous reset
*/
input wire async_rst,
/*
* AXI input
*/
input wire input_clk,
input wire [DATA_WIDTH-1:0] input_axis_tdata,
input wire input_axis_tvalid,
output wire input_axis_tready,
input wire input_axis_tlast,
input wire input_axis_tuser,
/*
* AXI output
*/
input wire output_clk,
output wire [DATA_WIDTH-1:0] output_axis_tdata,
output wire output_axis_tvalid,
input wire output_axis_tready,
output wire output_axis_tlast,
output wire output_axis_tuser
);
reg [ADDR_WIDTH:0] wr_ptr_reg = {ADDR_WIDTH+1{1'b0}}, wr_ptr_next;
reg [ADDR_WIDTH:0] wr_ptr_gray_reg = {ADDR_WIDTH+1{1'b0}}, wr_ptr_gray_next;
reg [ADDR_WIDTH:0] rd_ptr_reg = {ADDR_WIDTH+1{1'b0}}, rd_ptr_next;
reg [ADDR_WIDTH:0] rd_ptr_gray_reg = {ADDR_WIDTH+1{1'b0}}, rd_ptr_gray_next;
reg [ADDR_WIDTH:0] wr_ptr_gray_sync1_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] wr_ptr_gray_sync2_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] rd_ptr_gray_sync1_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] rd_ptr_gray_sync2_reg = {ADDR_WIDTH+1{1'b0}};
reg input_rst_sync1_reg = 1'b1;
reg input_rst_sync2_reg = 1'b1;
reg input_rst_sync3_reg = 1'b1;
reg output_rst_sync1_reg = 1'b1;
reg output_rst_sync2_reg = 1'b1;
reg output_rst_sync3_reg = 1'b1;
reg [DATA_WIDTH+2-1:0] mem[(2**ADDR_WIDTH)-1:0];
reg [DATA_WIDTH-1:0] output_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next;
reg output_axis_tlast_reg = 1'b0;
reg output_axis_tuser_reg = 1'b0;
// full when first TWO MSBs do NOT match, but rest matches
// (gray code equivalent of first MSB different but rest same)
wire full = ((wr_ptr_gray_reg[ADDR_WIDTH] != rd_ptr_gray_sync2_reg[ADDR_WIDTH]) &&
(wr_ptr_gray_reg[ADDR_WIDTH-1] != rd_ptr_gray_sync2_reg[ADDR_WIDTH-1]) &&
(wr_ptr_gray_reg[ADDR_WIDTH-2:0] == rd_ptr_gray_sync2_reg[ADDR_WIDTH-2:0]));
// empty when pointers match exactly
wire empty = rd_ptr_gray_reg == wr_ptr_gray_sync2_reg;
// control signals
reg write;
reg read;
assign input_axis_tready = ~full & ~input_rst_sync3_reg;
assign output_axis_tdata = output_axis_tdata_reg;
assign output_axis_tvalid = output_axis_tvalid_reg;
assign output_axis_tlast = output_axis_tlast_reg;
assign output_axis_tuser = output_axis_tuser_reg;
// reset synchronization
always @(posedge input_clk or posedge async_rst) begin
if (async_rst) begin
input_rst_sync1_reg <= 1'b1;
input_rst_sync2_reg <= 1'b1;
input_rst_sync3_reg <= 1'b1;
end else begin
input_rst_sync1_reg <= 1'b0;
input_rst_sync2_reg <= input_rst_sync1_reg | output_rst_sync1_reg;
input_rst_sync3_reg <= input_rst_sync2_reg;
end
end
always @(posedge output_clk or posedge async_rst) begin
if (async_rst) begin
output_rst_sync1_reg <= 1'b1;
output_rst_sync2_reg <= 1'b1;
output_rst_sync3_reg <= 1'b1;
end else begin
output_rst_sync1_reg <= 1'b0;
output_rst_sync2_reg <= output_rst_sync1_reg;
output_rst_sync3_reg <= output_rst_sync2_reg;
end
end
// Write logic
always @* begin
write = 1'b0;
wr_ptr_next = wr_ptr_reg;
wr_ptr_gray_next = wr_ptr_gray_reg;
if (input_axis_tvalid) begin
// input data valid
if (~full) begin
// not full, perform write
write = 1'b1;
wr_ptr_next = wr_ptr_reg + 1;
wr_ptr_gray_next = wr_ptr_next ^ (wr_ptr_next >> 1);
end
end
end
always @(posedge input_clk) begin
if (input_rst_sync3_reg) begin
wr_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_gray_reg <= {ADDR_WIDTH+1{1'b0}};
end else begin
wr_ptr_reg <= wr_ptr_next;
wr_ptr_gray_reg <= wr_ptr_gray_next;
end
if (write) begin
mem[wr_ptr_reg[ADDR_WIDTH-1:0]] <= {input_axis_tlast, input_axis_tuser, input_axis_tdata};
end
end
// pointer synchronization
always @(posedge input_clk) begin
if (input_rst_sync3_reg) begin
rd_ptr_gray_sync1_reg <= {ADDR_WIDTH+1{1'b0}};
rd_ptr_gray_sync2_reg <= {ADDR_WIDTH+1{1'b0}};
end else begin
rd_ptr_gray_sync1_reg <= rd_ptr_gray_reg;
rd_ptr_gray_sync2_reg <= rd_ptr_gray_sync1_reg;
end
end
always @(posedge output_clk) begin
if (output_rst_sync3_reg) begin
wr_ptr_gray_sync1_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_gray_sync2_reg <= {ADDR_WIDTH+1{1'b0}};
end else begin
wr_ptr_gray_sync1_reg <= wr_ptr_gray_reg;
wr_ptr_gray_sync2_reg <= wr_ptr_gray_sync1_reg;
end
end
// Read logic
always @* begin
read = 1'b0;
rd_ptr_next = rd_ptr_reg;
rd_ptr_gray_next = rd_ptr_gray_reg;
output_axis_tvalid_next = output_axis_tvalid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
// output data not valid OR currently being transferred
if (~empty) begin
// not empty, perform read
read = 1'b1;
output_axis_tvalid_next = 1'b1;
rd_ptr_next = rd_ptr_reg + 1;
rd_ptr_gray_next = rd_ptr_next ^ (rd_ptr_next >> 1);
end else begin
output_axis_tvalid_next = 1'b0;
end
end
end
always @(posedge output_clk) begin
if (output_rst_sync3_reg) begin
rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
rd_ptr_gray_reg <= {ADDR_WIDTH+1{1'b0}};
output_axis_tvalid_reg <= 1'b0;
end else begin
rd_ptr_reg <= rd_ptr_next;
rd_ptr_gray_reg <= rd_ptr_gray_next;
output_axis_tvalid_reg <= output_axis_tvalid_next;
end
if (read) begin
{output_axis_tlast_reg, output_axis_tuser_reg, output_axis_tdata_reg} <= mem[rd_ptr_reg[ADDR_WIDTH-1:0]];
end
end
endmodule