1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_eth_fcs_check_64.v
2018-02-26 12:50:51 -08:00

479 lines
15 KiB
Verilog

/*
Copyright (c) 2015-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream Ethernet FCS checker (64 bit datapath)
*/
module axis_eth_fcs_check_64
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [63:0] input_axis_tdata,
input wire [7:0] input_axis_tkeep,
input wire input_axis_tvalid,
output wire input_axis_tready,
input wire input_axis_tlast,
input wire input_axis_tuser,
/*
* AXI output
*/
output wire [63:0] output_axis_tdata,
output wire [7:0] output_axis_tkeep,
output wire output_axis_tvalid,
input wire output_axis_tready,
output wire output_axis_tlast,
output wire output_axis_tuser,
/*
* Status
*/
output wire busy,
output wire error_bad_fcs
);
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_PAYLOAD = 2'd1,
STATE_LAST = 2'd2;
reg [1:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg shift_in;
reg shift_reset;
reg [7:0] last_cycle_tkeep_reg = 8'd0, last_cycle_tkeep_next;
reg last_cycle_tuser_reg = 1'b0, last_cycle_tuser_next;
reg [63:0] input_axis_tdata_d0 = 64'd0;
reg [7:0] input_axis_tkeep_d0 = 8'd0;
reg input_axis_tvalid_d0 = 1'b0;
reg input_axis_tuser_d0 = 1'b0;
reg busy_reg = 1'b0;
reg error_bad_fcs_reg = 1'b0, error_bad_fcs_next;
reg input_axis_tready_reg = 1'b0, input_axis_tready_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
reg [31:0] crc_state3 = 32'hFFFFFFFF;
wire [31:0] crc_next0;
wire [31:0] crc_next1;
wire [31:0] crc_next2;
wire [31:0] crc_next3;
wire [31:0] crc_next7;
wire crc_valid0 = crc_next0 == ~32'h2144df1c;
wire crc_valid1 = crc_next1 == ~32'h2144df1c;
wire crc_valid2 = crc_next2 == ~32'h2144df1c;
wire crc_valid3 = crc_next3 == ~32'h2144df1c;
// internal datapath
reg [63:0] output_axis_tdata_int;
reg [7:0] output_axis_tkeep_int;
reg output_axis_tvalid_int;
reg output_axis_tready_int_reg = 1'b0;
reg output_axis_tlast_int;
reg output_axis_tuser_int;
wire output_axis_tready_int_early;
assign input_axis_tready = input_axis_tready_reg;
assign busy = busy_reg;
assign error_bad_fcs = error_bad_fcs_reg;
wire last_cycle = state_reg == STATE_LAST;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(last_cycle ? input_axis_tdata_d0[39:32] : input_axis_tdata[7:0]),
.state_in(last_cycle ? crc_state3 : crc_state),
.data_out(),
.state_out(crc_next0)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(16),
.STYLE("AUTO")
)
eth_crc_16 (
.data_in(last_cycle ? input_axis_tdata_d0[47:32] : input_axis_tdata[15:0]),
.state_in(last_cycle ? crc_state3 : crc_state),
.data_out(),
.state_out(crc_next1)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(24),
.STYLE("AUTO")
)
eth_crc_24 (
.data_in(last_cycle ? input_axis_tdata_d0[55:32] : input_axis_tdata[23:0]),
.state_in(last_cycle ? crc_state3 : crc_state),
.data_out(),
.state_out(crc_next2)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
eth_crc_32 (
.data_in(last_cycle ? input_axis_tdata_d0[63:32] : input_axis_tdata[31:0]),
.state_in(last_cycle ? crc_state3 : crc_state),
.data_out(),
.state_out(crc_next3)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(64),
.STYLE("AUTO")
)
eth_crc_64 (
.data_in(input_axis_tdata[63:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next7)
);
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
shift_in = 1'b0;
shift_reset = 1'b0;
last_cycle_tkeep_next = last_cycle_tkeep_reg;
last_cycle_tuser_next = last_cycle_tuser_reg;
input_axis_tready_next = 1'b0;
output_axis_tdata_int = 64'd0;
output_axis_tkeep_int = 8'd0;
output_axis_tvalid_int = 1'b0;
output_axis_tlast_int = 1'b0;
output_axis_tuser_int = 1'b0;
error_bad_fcs_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for data
input_axis_tready_next = output_axis_tready_int_early;
reset_crc = 1'b1;
output_axis_tdata_int = input_axis_tdata_d0;
output_axis_tkeep_int = input_axis_tkeep_d0;
output_axis_tvalid_int = input_axis_tvalid_d0 & input_axis_tvalid;
output_axis_tlast_int = 1'b0;
output_axis_tuser_int = 1'b0;
if (input_axis_tready & input_axis_tvalid) begin
shift_in = 1'b1;
reset_crc = 1'b0;
update_crc = 1'b1;
if (input_axis_tlast) begin
if (input_axis_tkeep[7:4] == 0) begin
shift_reset = 1'b1;
reset_crc = 1'b1;
output_axis_tlast_int = 1'b1;
output_axis_tuser_int = input_axis_tuser;
output_axis_tkeep_int = {input_axis_tkeep[3:0], 4'b1111};
if ((input_axis_tkeep[3:0] == 4'b0001 & crc_valid0) ||
(input_axis_tkeep[3:0] == 4'b0011 & crc_valid1) ||
(input_axis_tkeep[3:0] == 4'b0111 & crc_valid2) ||
(input_axis_tkeep[3:0] == 4'b1111 & crc_valid3)) begin
// CRC valid
end else begin
output_axis_tuser_int = 1'b1;
error_bad_fcs_next = 1'b1;
end
input_axis_tready_next = output_axis_tready_int_early;
state_next = STATE_IDLE;
end else begin
last_cycle_tkeep_next = {4'b0000, input_axis_tkeep[7:4]};
last_cycle_tuser_next = input_axis_tuser;
input_axis_tready_next = 1'b0;
state_next = STATE_LAST;
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// transfer payload
input_axis_tready_next = output_axis_tready_int_early;
output_axis_tdata_int = input_axis_tdata_d0;
output_axis_tkeep_int = input_axis_tkeep_d0;
output_axis_tvalid_int = input_axis_tvalid_d0 & input_axis_tvalid;
output_axis_tlast_int = 1'b0;
output_axis_tuser_int = 1'b0;
if (input_axis_tready & input_axis_tvalid) begin
shift_in = 1'b1;
update_crc = 1'b1;
if (input_axis_tlast) begin
if (input_axis_tkeep[7:4] == 0) begin
shift_reset = 1'b1;
reset_crc = 1'b1;
output_axis_tlast_int = 1'b1;
output_axis_tuser_int = input_axis_tuser;
output_axis_tkeep_int = {input_axis_tkeep[3:0], 4'b1111};
if ((input_axis_tkeep[3:0] == 4'b0001 & crc_valid0) ||
(input_axis_tkeep[3:0] == 4'b0011 & crc_valid1) ||
(input_axis_tkeep[3:0] == 4'b0111 & crc_valid2) ||
(input_axis_tkeep[3:0] == 4'b1111 & crc_valid3)) begin
// CRC valid
end else begin
output_axis_tuser_int = 1'b1;
error_bad_fcs_next = 1'b1;
end
input_axis_tready_next = output_axis_tready_int_early;
state_next = STATE_IDLE;
end else begin
last_cycle_tkeep_next = {4'b0000, input_axis_tkeep[7:4]};
last_cycle_tuser_next = input_axis_tuser;
input_axis_tready_next = 1'b0;
state_next = STATE_LAST;
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_PAYLOAD;
end
end
STATE_LAST: begin
// last cycle
input_axis_tready_next = 1'b0;
output_axis_tdata_int = input_axis_tdata_d0;
output_axis_tkeep_int = last_cycle_tkeep_reg;
output_axis_tvalid_int = input_axis_tvalid_d0;
output_axis_tlast_int = 1'b1;
output_axis_tuser_int = last_cycle_tuser_reg;
if ((input_axis_tkeep_d0[7:4] == 4'b0001 & crc_valid0) ||
(input_axis_tkeep_d0[7:4] == 4'b0011 & crc_valid1) ||
(input_axis_tkeep_d0[7:4] == 4'b0111 & crc_valid2) ||
(input_axis_tkeep_d0[7:4] == 4'b1111 & crc_valid3)) begin
// CRC valid
end else begin
output_axis_tuser_int = 1'b1;
error_bad_fcs_next = 1'b1;
end
if (output_axis_tready_int_reg) begin
shift_reset = 1'b1;
reset_crc = 1'b1;
input_axis_tready_next = output_axis_tready_int_early;
state_next = STATE_IDLE;
end else begin
state_next = STATE_LAST;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
input_axis_tready_reg <= 1'b0;
busy_reg <= 1'b0;
error_bad_fcs_reg <= 1'b0;
input_axis_tvalid_d0 <= 1'b0;
crc_state <= 32'hFFFFFFFF;
crc_state3 <= 32'hFFFFFFFF;
end else begin
state_reg <= state_next;
input_axis_tready_reg <= input_axis_tready_next;
busy_reg <= state_next != STATE_IDLE;
error_bad_fcs_reg <= error_bad_fcs_next;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
crc_state3 <= 32'hFFFFFFFF;
end else if (update_crc) begin
crc_state <= crc_next7;
crc_state3 <= crc_next3;
end
if (shift_reset) begin
input_axis_tvalid_d0 <= 1'b0;
end else if (shift_in) begin
input_axis_tvalid_d0 <= input_axis_tvalid;
end
end
last_cycle_tkeep_reg <= last_cycle_tkeep_next;
last_cycle_tuser_reg <= last_cycle_tuser_next;
if (shift_in) begin
input_axis_tdata_d0 <= input_axis_tdata;
input_axis_tkeep_d0 <= input_axis_tkeep;
input_axis_tuser_d0 <= input_axis_tuser;
end
end
// output datapath logic
reg [63:0] output_axis_tdata_reg = 64'd0;
reg [7:0] output_axis_tkeep_reg = 8'd0;
reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next;
reg output_axis_tlast_reg = 1'b0;
reg output_axis_tuser_reg = 1'b0;
reg [63:0] temp_axis_tdata_reg = 64'd0;
reg [7:0] temp_axis_tkeep_reg = 8'd0;
reg temp_axis_tvalid_reg = 1'b0, temp_axis_tvalid_next;
reg temp_axis_tlast_reg = 1'b0;
reg temp_axis_tuser_reg = 1'b0;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign output_axis_tdata = output_axis_tdata_reg;
assign output_axis_tkeep = output_axis_tkeep_reg;
assign output_axis_tvalid = output_axis_tvalid_reg;
assign output_axis_tlast = output_axis_tlast_reg;
assign output_axis_tuser = output_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign output_axis_tready_int_early = output_axis_tready | (~temp_axis_tvalid_reg & (~output_axis_tvalid_reg | ~output_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
output_axis_tvalid_next = output_axis_tvalid_reg;
temp_axis_tvalid_next = temp_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (output_axis_tready_int_reg) begin
// input is ready
if (output_axis_tready | ~output_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
output_axis_tvalid_next = output_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_axis_tvalid_next = output_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (output_axis_tready) begin
// input is not ready, but output is ready
output_axis_tvalid_next = temp_axis_tvalid_reg;
temp_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
output_axis_tvalid_reg <= 1'b0;
output_axis_tready_int_reg <= 1'b0;
temp_axis_tvalid_reg <= 1'b0;
end else begin
output_axis_tvalid_reg <= output_axis_tvalid_next;
output_axis_tready_int_reg <= output_axis_tready_int_early;
temp_axis_tvalid_reg <= temp_axis_tvalid_next;
end
// datapath
if (store_axis_int_to_output) begin
output_axis_tdata_reg <= output_axis_tdata_int;
output_axis_tkeep_reg <= output_axis_tkeep_int;
output_axis_tlast_reg <= output_axis_tlast_int;
output_axis_tuser_reg <= output_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
output_axis_tdata_reg <= temp_axis_tdata_reg;
output_axis_tkeep_reg <= temp_axis_tkeep_reg;
output_axis_tlast_reg <= temp_axis_tlast_reg;
output_axis_tuser_reg <= temp_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_axis_tdata_reg <= output_axis_tdata_int;
temp_axis_tkeep_reg <= output_axis_tkeep_int;
temp_axis_tlast_reg <= output_axis_tlast_int;
temp_axis_tuser_reg <= output_axis_tuser_int;
end
end
endmodule