mirror of
https://github.com/corundum/corundum.git
synced 2025-01-16 08:12:53 +08:00
f59c5b78c8
Signed-off-by: Alex Forencich <alex@alexforencich.com>
1887 lines
82 KiB
Verilog
1887 lines
82 KiB
Verilog
/*
|
|
|
|
Copyright (c) 2018-2021 Alex Forencich
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
// Language: Verilog 2001
|
|
|
|
`resetall
|
|
`timescale 1ns / 1ps
|
|
`default_nettype none
|
|
|
|
/*
|
|
* Ultrascale PCIe AXI DMA Read
|
|
*/
|
|
module pcie_us_axi_dma_rd #
|
|
(
|
|
// Width of PCIe AXI stream interfaces in bits
|
|
parameter AXIS_PCIE_DATA_WIDTH = 256,
|
|
// PCIe AXI stream tkeep signal width (words per cycle)
|
|
parameter AXIS_PCIE_KEEP_WIDTH = (AXIS_PCIE_DATA_WIDTH/32),
|
|
// PCIe AXI stream RC tuser signal width
|
|
parameter AXIS_PCIE_RC_USER_WIDTH = AXIS_PCIE_DATA_WIDTH < 512 ? 75 : 161,
|
|
// PCIe AXI stream RQ tuser signal width
|
|
parameter AXIS_PCIE_RQ_USER_WIDTH = AXIS_PCIE_DATA_WIDTH < 512 ? 60 : 137,
|
|
// RQ sequence number width
|
|
parameter RQ_SEQ_NUM_WIDTH = AXIS_PCIE_RQ_USER_WIDTH == 60 ? 4 : 6,
|
|
// RQ sequence number tracking enable
|
|
parameter RQ_SEQ_NUM_ENABLE = 0,
|
|
// Width of AXI data bus in bits
|
|
parameter AXI_DATA_WIDTH = AXIS_PCIE_DATA_WIDTH,
|
|
// Width of AXI address bus in bits
|
|
parameter AXI_ADDR_WIDTH = 64,
|
|
// Width of AXI wstrb (width of data bus in words)
|
|
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
|
|
// Width of AXI ID signal
|
|
parameter AXI_ID_WIDTH = 8,
|
|
// Maximum AXI burst length to generate
|
|
parameter AXI_MAX_BURST_LEN = 256,
|
|
// PCIe address width
|
|
parameter PCIE_ADDR_WIDTH = 64,
|
|
// PCIe tag count
|
|
parameter PCIE_TAG_COUNT = AXIS_PCIE_RQ_USER_WIDTH == 60 ? 64 : 256,
|
|
// Length field width
|
|
parameter LEN_WIDTH = 20,
|
|
// Tag field width
|
|
parameter TAG_WIDTH = 8,
|
|
// Operation table size
|
|
parameter OP_TABLE_SIZE = PCIE_TAG_COUNT,
|
|
// In-flight transmit limit
|
|
parameter TX_LIMIT = 2**(RQ_SEQ_NUM_WIDTH-1),
|
|
// Transmit flow control
|
|
parameter TX_FC_ENABLE = 0
|
|
)
|
|
(
|
|
input wire clk,
|
|
input wire rst,
|
|
|
|
/*
|
|
* AXI input (RC)
|
|
*/
|
|
input wire [AXIS_PCIE_DATA_WIDTH-1:0] s_axis_rc_tdata,
|
|
input wire [AXIS_PCIE_KEEP_WIDTH-1:0] s_axis_rc_tkeep,
|
|
input wire s_axis_rc_tvalid,
|
|
output wire s_axis_rc_tready,
|
|
input wire s_axis_rc_tlast,
|
|
input wire [AXIS_PCIE_RC_USER_WIDTH-1:0] s_axis_rc_tuser,
|
|
|
|
/*
|
|
* AXI output (RQ)
|
|
*/
|
|
output wire [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata,
|
|
output wire [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep,
|
|
output wire m_axis_rq_tvalid,
|
|
input wire m_axis_rq_tready,
|
|
output wire m_axis_rq_tlast,
|
|
output wire [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser,
|
|
|
|
/*
|
|
* Transmit sequence number input
|
|
*/
|
|
input wire [RQ_SEQ_NUM_WIDTH-1:0] s_axis_rq_seq_num_0,
|
|
input wire s_axis_rq_seq_num_valid_0,
|
|
input wire [RQ_SEQ_NUM_WIDTH-1:0] s_axis_rq_seq_num_1,
|
|
input wire s_axis_rq_seq_num_valid_1,
|
|
|
|
/*
|
|
* Transmit flow control
|
|
*/
|
|
input wire [7:0] pcie_tx_fc_nph_av,
|
|
|
|
/*
|
|
* AXI read descriptor input
|
|
*/
|
|
input wire [PCIE_ADDR_WIDTH-1:0] s_axis_read_desc_pcie_addr,
|
|
input wire [AXI_ADDR_WIDTH-1:0] s_axis_read_desc_axi_addr,
|
|
input wire [LEN_WIDTH-1:0] s_axis_read_desc_len,
|
|
input wire [TAG_WIDTH-1:0] s_axis_read_desc_tag,
|
|
input wire s_axis_read_desc_valid,
|
|
output wire s_axis_read_desc_ready,
|
|
|
|
/*
|
|
* AXI read descriptor status output
|
|
*/
|
|
output wire [TAG_WIDTH-1:0] m_axis_read_desc_status_tag,
|
|
output wire [3:0] m_axis_read_desc_status_error,
|
|
output wire m_axis_read_desc_status_valid,
|
|
|
|
/*
|
|
* AXI master interface
|
|
*/
|
|
output wire [AXI_ID_WIDTH-1:0] m_axi_awid,
|
|
output wire [AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
|
|
output wire [7:0] m_axi_awlen,
|
|
output wire [2:0] m_axi_awsize,
|
|
output wire [1:0] m_axi_awburst,
|
|
output wire m_axi_awlock,
|
|
output wire [3:0] m_axi_awcache,
|
|
output wire [2:0] m_axi_awprot,
|
|
output wire m_axi_awvalid,
|
|
input wire m_axi_awready,
|
|
output wire [AXI_DATA_WIDTH-1:0] m_axi_wdata,
|
|
output wire [AXI_STRB_WIDTH-1:0] m_axi_wstrb,
|
|
output wire m_axi_wlast,
|
|
output wire m_axi_wvalid,
|
|
input wire m_axi_wready,
|
|
input wire [AXI_ID_WIDTH-1:0] m_axi_bid,
|
|
input wire [1:0] m_axi_bresp,
|
|
input wire m_axi_bvalid,
|
|
output wire m_axi_bready,
|
|
|
|
/*
|
|
* Configuration
|
|
*/
|
|
input wire enable,
|
|
input wire ext_tag_enable,
|
|
input wire [15:0] requester_id,
|
|
input wire requester_id_enable,
|
|
input wire [2:0] max_read_request_size,
|
|
|
|
/*
|
|
* Status
|
|
*/
|
|
output wire status_error_cor,
|
|
output wire status_error_uncor
|
|
);
|
|
|
|
parameter AXI_WORD_WIDTH = AXI_STRB_WIDTH;
|
|
parameter AXI_WORD_SIZE = AXI_DATA_WIDTH/AXI_WORD_WIDTH;
|
|
parameter AXI_BURST_SIZE = $clog2(AXI_STRB_WIDTH);
|
|
parameter AXI_MAX_BURST_SIZE = AXI_MAX_BURST_LEN*AXI_WORD_WIDTH;
|
|
|
|
parameter AXIS_PCIE_WORD_WIDTH = AXIS_PCIE_KEEP_WIDTH;
|
|
parameter AXIS_PCIE_WORD_SIZE = AXIS_PCIE_DATA_WIDTH/AXIS_PCIE_WORD_WIDTH;
|
|
|
|
parameter OFFSET_WIDTH = $clog2(AXIS_PCIE_DATA_WIDTH/8);
|
|
parameter CYCLE_COUNT_WIDTH = 13-AXI_BURST_SIZE;
|
|
|
|
parameter PCIE_TAG_WIDTH = $clog2(PCIE_TAG_COUNT);
|
|
parameter PCIE_TAG_COUNT_1 = 2**PCIE_TAG_WIDTH > 32 ? 32 : 2**PCIE_TAG_WIDTH;
|
|
parameter PCIE_TAG_WIDTH_1 = $clog2(PCIE_TAG_COUNT_1);
|
|
parameter PCIE_TAG_COUNT_2 = 2**PCIE_TAG_WIDTH > 32 ? 2**PCIE_TAG_WIDTH-32 : 0;
|
|
parameter PCIE_TAG_WIDTH_2 = $clog2(PCIE_TAG_COUNT_2);
|
|
|
|
parameter OP_TAG_WIDTH = $clog2(OP_TABLE_SIZE);
|
|
parameter OP_TABLE_READ_COUNT_WIDTH = PCIE_TAG_WIDTH+1;
|
|
parameter OP_TABLE_WRITE_COUNT_WIDTH = LEN_WIDTH;
|
|
|
|
parameter STATUS_FIFO_ADDR_WIDTH = 5;
|
|
|
|
parameter INIT_COUNT_WIDTH = PCIE_TAG_WIDTH > OP_TAG_WIDTH ? PCIE_TAG_WIDTH : OP_TAG_WIDTH;
|
|
|
|
// bus width assertions
|
|
initial begin
|
|
if (AXIS_PCIE_DATA_WIDTH != 64 && AXIS_PCIE_DATA_WIDTH != 128 && AXIS_PCIE_DATA_WIDTH != 256 && AXIS_PCIE_DATA_WIDTH != 512) begin
|
|
$error("Error: PCIe interface width must be 64, 128, 256, or 512 (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (AXIS_PCIE_KEEP_WIDTH * 32 != AXIS_PCIE_DATA_WIDTH) begin
|
|
$error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (AXIS_PCIE_DATA_WIDTH == 512) begin
|
|
if (AXIS_PCIE_RC_USER_WIDTH != 161) begin
|
|
$error("Error: PCIe RC tuser width must be 161 (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (AXIS_PCIE_RQ_USER_WIDTH != 137) begin
|
|
$error("Error: PCIe RQ tuser width must be 137 (instance %m)");
|
|
$finish;
|
|
end
|
|
end else begin
|
|
if (AXIS_PCIE_RC_USER_WIDTH != 75) begin
|
|
$error("Error: PCIe RC tuser width must be 75 (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (AXIS_PCIE_RQ_USER_WIDTH != 60 && AXIS_PCIE_RQ_USER_WIDTH != 62) begin
|
|
$error("Error: PCIe RQ tuser width must be 60 or 62 (instance %m)");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
if (AXIS_PCIE_RQ_USER_WIDTH == 60) begin
|
|
if (RQ_SEQ_NUM_ENABLE && RQ_SEQ_NUM_WIDTH != 4) begin
|
|
$error("Error: RQ sequence number width must be 4 (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (PCIE_TAG_COUNT > 64) begin
|
|
$error("Error: PCIe tag count must be no larger than 64 (instance %m)");
|
|
$finish;
|
|
end
|
|
end else begin
|
|
if (RQ_SEQ_NUM_ENABLE && RQ_SEQ_NUM_WIDTH != 6) begin
|
|
$error("Error: RQ sequence number width must be 6 (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (PCIE_TAG_COUNT > 256) begin
|
|
$error("Error: PCIe tag count must be no larger than 256 (instance %m)");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
if (RQ_SEQ_NUM_ENABLE && TX_LIMIT > 2**(RQ_SEQ_NUM_WIDTH-1)) begin
|
|
$error("Error: TX limit out of range (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (AXI_DATA_WIDTH != AXIS_PCIE_DATA_WIDTH) begin
|
|
$error("Error: AXI interface width must match PCIe interface width (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (AXI_STRB_WIDTH * 8 != AXI_DATA_WIDTH) begin
|
|
$error("Error: AXI interface requires byte (8-bit) granularity (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (AXI_MAX_BURST_LEN < 1 || AXI_MAX_BURST_LEN > 256) begin
|
|
$error("Error: AXI_MAX_BURST_LEN must be between 1 and 256 (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (PCIE_TAG_COUNT < 1 || PCIE_TAG_COUNT > 256) begin
|
|
$error("Error: PCIe tag count must be between 1 and 256 (instance %m)");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
localparam [3:0]
|
|
REQ_MEM_READ = 4'b0000,
|
|
REQ_MEM_WRITE = 4'b0001,
|
|
REQ_IO_READ = 4'b0010,
|
|
REQ_IO_WRITE = 4'b0011,
|
|
REQ_MEM_FETCH_ADD = 4'b0100,
|
|
REQ_MEM_SWAP = 4'b0101,
|
|
REQ_MEM_CAS = 4'b0110,
|
|
REQ_MEM_READ_LOCKED = 4'b0111,
|
|
REQ_CFG_READ_0 = 4'b1000,
|
|
REQ_CFG_READ_1 = 4'b1001,
|
|
REQ_CFG_WRITE_0 = 4'b1010,
|
|
REQ_CFG_WRITE_1 = 4'b1011,
|
|
REQ_MSG = 4'b1100,
|
|
REQ_MSG_VENDOR = 4'b1101,
|
|
REQ_MSG_ATS = 4'b1110;
|
|
|
|
localparam [2:0]
|
|
CPL_STATUS_SC = 3'b000, // successful completion
|
|
CPL_STATUS_UR = 3'b001, // unsupported request
|
|
CPL_STATUS_CRS = 3'b010, // configuration request retry status
|
|
CPL_STATUS_CA = 3'b100; // completer abort
|
|
|
|
localparam [3:0]
|
|
RC_ERROR_NORMAL_TERMINATION = 4'b0000,
|
|
RC_ERROR_POISONED = 4'b0001,
|
|
RC_ERROR_BAD_STATUS = 4'b0010,
|
|
RC_ERROR_INVALID_LENGTH = 4'b0011,
|
|
RC_ERROR_MISMATCH = 4'b0100,
|
|
RC_ERROR_INVALID_ADDRESS = 4'b0101,
|
|
RC_ERROR_INVALID_TAG = 4'b0110,
|
|
RC_ERROR_TIMEOUT = 4'b1001,
|
|
RC_ERROR_FLR = 4'b1000;
|
|
|
|
localparam [1:0]
|
|
AXI_RESP_OKAY = 2'b00,
|
|
AXI_RESP_EXOKAY = 2'b01,
|
|
AXI_RESP_SLVERR = 2'b10,
|
|
AXI_RESP_DECERR = 2'b11;
|
|
|
|
localparam [3:0]
|
|
DMA_ERROR_NONE = 4'd0,
|
|
DMA_ERROR_TIMEOUT = 4'd1,
|
|
DMA_ERROR_PARITY = 4'd2,
|
|
DMA_ERROR_AXI_RD_SLVERR = 4'd4,
|
|
DMA_ERROR_AXI_RD_DECERR = 4'd5,
|
|
DMA_ERROR_AXI_WR_SLVERR = 4'd6,
|
|
DMA_ERROR_AXI_WR_DECERR = 4'd7,
|
|
DMA_ERROR_PCIE_FLR = 4'd8,
|
|
DMA_ERROR_PCIE_CPL_POISONED = 4'd9,
|
|
DMA_ERROR_PCIE_CPL_STATUS_UR = 4'd10,
|
|
DMA_ERROR_PCIE_CPL_STATUS_CA = 4'd11;
|
|
|
|
localparam [1:0]
|
|
REQ_STATE_IDLE = 2'd0,
|
|
REQ_STATE_START = 2'd1,
|
|
REQ_STATE_HEADER = 2'd2;
|
|
|
|
reg [1:0] req_state_reg = REQ_STATE_IDLE, req_state_next;
|
|
|
|
localparam [2:0]
|
|
TLP_STATE_IDLE = 3'd0,
|
|
TLP_STATE_HEADER = 3'd1,
|
|
TLP_STATE_START = 3'd2,
|
|
TLP_STATE_TRANSFER = 3'd3,
|
|
TLP_STATE_WAIT_END = 3'd4;
|
|
|
|
reg [2:0] tlp_state_reg = TLP_STATE_IDLE, tlp_state_next;
|
|
|
|
// datapath control signals
|
|
reg transfer_in_save;
|
|
|
|
reg [3:0] req_first_be;
|
|
reg [3:0] req_last_be;
|
|
reg [12:0] req_tlp_count;
|
|
reg [10:0] req_dword_count;
|
|
reg req_last_tlp;
|
|
reg [PCIE_ADDR_WIDTH-1:0] req_pcie_addr;
|
|
|
|
reg [INIT_COUNT_WIDTH-1:0] init_count_reg = 0;
|
|
reg init_done_reg = 1'b0;
|
|
reg init_pcie_tag_reg = 1'b1;
|
|
reg init_op_tag_reg = 1'b1;
|
|
|
|
reg [PCIE_ADDR_WIDTH-1:0] req_pcie_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, req_pcie_addr_next;
|
|
reg [AXI_ADDR_WIDTH-1:0] req_axi_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, req_axi_addr_next;
|
|
reg [LEN_WIDTH-1:0] req_op_count_reg = {LEN_WIDTH{1'b0}}, req_op_count_next;
|
|
reg req_zero_len_reg = 1'b0, req_zero_len_next;
|
|
reg [OP_TAG_WIDTH-1:0] req_op_tag_reg = {OP_TAG_WIDTH{1'b0}}, req_op_tag_next;
|
|
reg req_op_tag_valid_reg = 1'b0, req_op_tag_valid_next;
|
|
reg [PCIE_TAG_WIDTH-1:0] req_pcie_tag_reg = {PCIE_TAG_WIDTH{1'b0}}, req_pcie_tag_next;
|
|
reg req_pcie_tag_valid_reg = 1'b0, req_pcie_tag_valid_next;
|
|
|
|
reg [11:0] lower_addr_reg = 12'd0, lower_addr_next;
|
|
reg [12:0] byte_count_reg = 13'd0, byte_count_next;
|
|
reg [3:0] error_code_reg = 4'd0, error_code_next;
|
|
reg [AXI_ADDR_WIDTH-1:0] axi_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, axi_addr_next;
|
|
reg [10:0] op_dword_count_reg = 11'd0, op_dword_count_next;
|
|
reg [2:0] cpl_status_reg = 3'b000, cpl_status_next;
|
|
reg [12:0] op_count_reg = 13'd0, op_count_next;
|
|
reg [12:0] tr_count_reg = 13'd0, tr_count_next;
|
|
reg zero_len_reg = 1'b0, zero_len_next;
|
|
reg [CYCLE_COUNT_WIDTH-1:0] input_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, input_cycle_count_next;
|
|
reg [CYCLE_COUNT_WIDTH-1:0] output_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, output_cycle_count_next;
|
|
reg input_active_reg = 1'b0, input_active_next;
|
|
reg bubble_cycle_reg = 1'b0, bubble_cycle_next;
|
|
reg first_cycle_reg = 1'b0, first_cycle_next;
|
|
reg last_cycle_reg = 1'b0, last_cycle_next;
|
|
reg [PCIE_TAG_WIDTH-1:0] pcie_tag_reg = {PCIE_TAG_WIDTH{1'b0}}, pcie_tag_next;
|
|
reg [OP_TAG_WIDTH-1:0] op_tag_reg = {OP_TAG_WIDTH{1'b0}}, op_tag_next;
|
|
reg final_cpl_reg = 1'b0, final_cpl_next;
|
|
reg finish_tag_reg = 1'b0, finish_tag_next;
|
|
|
|
reg [OFFSET_WIDTH-1:0] offset_reg = {OFFSET_WIDTH{1'b0}}, offset_next;
|
|
reg [OFFSET_WIDTH-1:0] first_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, first_cycle_offset_next;
|
|
reg [OFFSET_WIDTH-1:0] last_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, last_cycle_offset_next;
|
|
|
|
reg [127:0] tlp_header_data;
|
|
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] tlp_tuser;
|
|
|
|
reg [10:0] max_read_request_size_dw_reg = 11'd0;
|
|
|
|
reg have_credit_reg = 1'b0;
|
|
|
|
reg [STATUS_FIFO_ADDR_WIDTH+1-1:0] status_fifo_wr_ptr_reg = 0;
|
|
reg [STATUS_FIFO_ADDR_WIDTH+1-1:0] status_fifo_rd_ptr_reg = 0, status_fifo_rd_ptr_next;
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg [OP_TAG_WIDTH-1:0] status_fifo_op_tag[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg status_fifo_skip[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg status_fifo_finish[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg [3:0] status_fifo_error[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
|
|
reg [OP_TAG_WIDTH-1:0] status_fifo_wr_op_tag;
|
|
reg status_fifo_wr_skip;
|
|
reg status_fifo_wr_finish;
|
|
reg [3:0] status_fifo_wr_error;
|
|
reg status_fifo_we;
|
|
reg status_fifo_skip_reg = 1'b0, status_fifo_skip_next;
|
|
reg status_fifo_finish_reg = 1'b0, status_fifo_finish_next;
|
|
reg [3:0] status_fifo_error_reg = 4'd0, status_fifo_error_next;
|
|
reg status_fifo_we_reg = 1'b0, status_fifo_we_next;
|
|
reg status_fifo_full_reg = 1'b0;
|
|
reg [OP_TAG_WIDTH-1:0] status_fifo_rd_op_tag_reg = 0, status_fifo_rd_op_tag_next;
|
|
reg status_fifo_rd_skip_reg = 1'b0, status_fifo_rd_skip_next;
|
|
reg status_fifo_rd_finish_reg = 1'b0, status_fifo_rd_finish_next;
|
|
reg [3:0] status_fifo_rd_error_reg = 4'd0, status_fifo_rd_error_next;
|
|
reg status_fifo_rd_valid_reg = 1'b0, status_fifo_rd_valid_next;
|
|
|
|
reg [RQ_SEQ_NUM_WIDTH-1:0] active_tx_count_reg = {RQ_SEQ_NUM_WIDTH{1'b0}};
|
|
reg active_tx_count_av_reg = 1'b1;
|
|
reg inc_active_tx;
|
|
|
|
reg s_axis_rc_tready_reg = 1'b0, s_axis_rc_tready_next;
|
|
reg s_axis_read_desc_ready_reg = 1'b0, s_axis_read_desc_ready_next;
|
|
|
|
reg [TAG_WIDTH-1:0] m_axis_read_desc_status_tag_reg = {TAG_WIDTH{1'b0}}, m_axis_read_desc_status_tag_next;
|
|
reg [3:0] m_axis_read_desc_status_error_reg = 4'd0, m_axis_read_desc_status_error_next;
|
|
reg m_axis_read_desc_status_valid_reg = 1'b0, m_axis_read_desc_status_valid_next;
|
|
|
|
reg [AXI_ADDR_WIDTH-1:0] m_axi_awaddr_reg = {AXI_ADDR_WIDTH{1'b0}}, m_axi_awaddr_next;
|
|
reg [7:0] m_axi_awlen_reg = 8'd0, m_axi_awlen_next;
|
|
reg m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
|
|
reg m_axi_bready_reg = 1'b0, m_axi_bready_next;
|
|
|
|
reg status_error_cor_reg = 1'b0, status_error_cor_next;
|
|
reg status_error_uncor_reg = 1'b0, status_error_uncor_next;
|
|
|
|
reg [AXIS_PCIE_DATA_WIDTH-1:0] save_axis_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
|
|
|
|
wire [AXI_DATA_WIDTH-1:0] shift_axis_tdata = {s_axis_rc_tdata, save_axis_tdata_reg} >> ((AXI_STRB_WIDTH-offset_reg)*AXI_WORD_SIZE);
|
|
|
|
// internal datapath
|
|
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_int;
|
|
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_int;
|
|
reg m_axis_rq_tvalid_int;
|
|
reg m_axis_rq_tready_int_reg = 1'b0;
|
|
reg m_axis_rq_tlast_int;
|
|
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser_int;
|
|
wire m_axis_rq_tready_int_early;
|
|
|
|
reg [AXI_DATA_WIDTH-1:0] m_axi_wdata_int;
|
|
reg [AXI_STRB_WIDTH-1:0] m_axi_wstrb_int;
|
|
reg m_axi_wvalid_int;
|
|
reg m_axi_wready_int_reg = 1'b0;
|
|
reg m_axi_wlast_int;
|
|
wire m_axi_wready_int_early;
|
|
|
|
assign s_axis_rc_tready = s_axis_rc_tready_reg;
|
|
assign s_axis_read_desc_ready = s_axis_read_desc_ready_reg;
|
|
|
|
assign m_axis_read_desc_status_tag = m_axis_read_desc_status_tag_reg;
|
|
assign m_axis_read_desc_status_error = m_axis_read_desc_status_error_reg;
|
|
assign m_axis_read_desc_status_valid = m_axis_read_desc_status_valid_reg;
|
|
|
|
assign m_axi_awid = {AXI_ID_WIDTH{1'b0}};
|
|
assign m_axi_awaddr = m_axi_awaddr_reg;
|
|
assign m_axi_awlen = m_axi_awlen_reg;
|
|
assign m_axi_awsize = $clog2(AXI_STRB_WIDTH);
|
|
assign m_axi_awburst = 2'b01;
|
|
assign m_axi_awlock = 1'b0;
|
|
assign m_axi_awcache = 4'b0011;
|
|
assign m_axi_awprot = 3'b010;
|
|
assign m_axi_awvalid = m_axi_awvalid_reg;
|
|
assign m_axi_bready = m_axi_bready_reg;
|
|
|
|
assign status_error_cor = status_error_cor_reg;
|
|
assign status_error_uncor = status_error_uncor_reg;
|
|
|
|
// PCIe tag management
|
|
reg [PCIE_TAG_WIDTH-1:0] pcie_tag_table_start_ptr_reg = 0, pcie_tag_table_start_ptr_next;
|
|
reg [AXI_ADDR_WIDTH-1:0] pcie_tag_table_start_axi_addr_reg = 0, pcie_tag_table_start_axi_addr_next;
|
|
reg [OP_TAG_WIDTH-1:0] pcie_tag_table_start_op_tag_reg = 0, pcie_tag_table_start_op_tag_next;
|
|
reg pcie_tag_table_start_zero_len_reg = 1'b0, pcie_tag_table_start_zero_len_next;
|
|
reg pcie_tag_table_start_en_reg = 1'b0, pcie_tag_table_start_en_next;
|
|
reg [PCIE_TAG_WIDTH-1:0] pcie_tag_table_finish_ptr;
|
|
reg pcie_tag_table_finish_en;
|
|
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg [AXI_ADDR_WIDTH-1:0] pcie_tag_table_axi_addr[(2**PCIE_TAG_WIDTH)-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg [OP_TAG_WIDTH-1:0] pcie_tag_table_op_tag[(2**PCIE_TAG_WIDTH)-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg pcie_tag_table_zero_len[(2**PCIE_TAG_WIDTH)-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg pcie_tag_table_active_a[(2**PCIE_TAG_WIDTH)-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg pcie_tag_table_active_b[(2**PCIE_TAG_WIDTH)-1:0];
|
|
|
|
reg [PCIE_TAG_WIDTH-1:0] pcie_tag_fifo_wr_tag;
|
|
|
|
reg [PCIE_TAG_WIDTH_1+1-1:0] pcie_tag_fifo_1_wr_ptr_reg = 0;
|
|
reg [PCIE_TAG_WIDTH_1+1-1:0] pcie_tag_fifo_1_rd_ptr_reg = 0, pcie_tag_fifo_1_rd_ptr_next;
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg [PCIE_TAG_WIDTH_1-1:0] pcie_tag_fifo_1_mem [2**PCIE_TAG_WIDTH_1-1:0];
|
|
reg pcie_tag_fifo_1_we;
|
|
|
|
reg [PCIE_TAG_WIDTH_2+1-1:0] pcie_tag_fifo_2_wr_ptr_reg = 0;
|
|
reg [PCIE_TAG_WIDTH_2+1-1:0] pcie_tag_fifo_2_rd_ptr_reg = 0, pcie_tag_fifo_2_rd_ptr_next;
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg [PCIE_TAG_WIDTH-1:0] pcie_tag_fifo_2_mem [2**PCIE_TAG_WIDTH_2-1:0];
|
|
reg pcie_tag_fifo_2_we;
|
|
|
|
// operation tag management
|
|
reg [OP_TAG_WIDTH-1:0] op_table_start_ptr;
|
|
reg [TAG_WIDTH-1:0] op_table_start_tag;
|
|
reg op_table_start_en;
|
|
reg [OP_TAG_WIDTH-1:0] op_table_read_start_ptr;
|
|
reg op_table_read_start_commit;
|
|
reg op_table_read_start_en;
|
|
reg [OP_TAG_WIDTH-1:0] op_table_update_status_ptr;
|
|
reg [3:0] op_table_update_status_error;
|
|
reg op_table_update_status_en;
|
|
reg [OP_TAG_WIDTH-1:0] op_table_read_finish_ptr;
|
|
reg op_table_read_finish_en;
|
|
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg [TAG_WIDTH-1:0] op_table_tag [2**OP_TAG_WIDTH-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg op_table_read_init_a [2**OP_TAG_WIDTH-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg op_table_read_init_b [2**OP_TAG_WIDTH-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg op_table_read_commit [2**OP_TAG_WIDTH-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg op_table_read_error [2**OP_TAG_WIDTH-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg [OP_TABLE_READ_COUNT_WIDTH-1:0] op_table_read_count_start [2**OP_TAG_WIDTH-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg [OP_TABLE_READ_COUNT_WIDTH-1:0] op_table_read_count_finish [2**OP_TAG_WIDTH-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg op_table_error_a [2**OP_TAG_WIDTH-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg op_table_error_b [2**OP_TAG_WIDTH-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg [3:0] op_table_error_code [2**OP_TAG_WIDTH-1:0];
|
|
|
|
reg [OP_TAG_WIDTH+1-1:0] op_tag_fifo_wr_ptr_reg = 0;
|
|
reg [OP_TAG_WIDTH+1-1:0] op_tag_fifo_rd_ptr_reg = 0, op_tag_fifo_rd_ptr_next;
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg [OP_TAG_WIDTH-1:0] op_tag_fifo_mem [2**OP_TAG_WIDTH-1:0];
|
|
reg [OP_TAG_WIDTH-1:0] op_tag_fifo_wr_tag;
|
|
reg op_tag_fifo_we;
|
|
|
|
integer i;
|
|
|
|
initial begin
|
|
for (i = 0; i < 2**OP_TAG_WIDTH; i = i + 1) begin
|
|
op_table_tag[i] = 0;
|
|
op_table_read_init_a[i] = 0;
|
|
op_table_read_init_b[i] = 0;
|
|
op_table_read_commit[i] = 0;
|
|
op_table_read_count_start[i] = 0;
|
|
op_table_read_count_finish[i] = 0;
|
|
op_table_error_a[i] = 0;
|
|
op_table_error_b[i] = 0;
|
|
op_table_error_code[i] = 0;
|
|
end
|
|
|
|
for (i = 0; i < 2**PCIE_TAG_WIDTH; i = i + 1) begin
|
|
pcie_tag_table_axi_addr[i] = 0;
|
|
pcie_tag_table_op_tag[i] = 0;
|
|
pcie_tag_table_zero_len[i] = 0;
|
|
pcie_tag_table_active_a[i] = 0;
|
|
pcie_tag_table_active_b[i] = 0;
|
|
end
|
|
end
|
|
|
|
always @* begin
|
|
req_state_next = REQ_STATE_IDLE;
|
|
|
|
s_axis_read_desc_ready_next = 1'b0;
|
|
|
|
req_pcie_addr_next = req_pcie_addr_reg;
|
|
req_axi_addr_next = req_axi_addr_reg;
|
|
req_op_count_next = req_op_count_reg;
|
|
req_zero_len_next = req_zero_len_reg;
|
|
req_op_tag_next = req_op_tag_reg;
|
|
req_op_tag_valid_next = req_op_tag_valid_reg;
|
|
req_pcie_tag_next = req_pcie_tag_reg;
|
|
req_pcie_tag_valid_next = req_pcie_tag_valid_reg;
|
|
|
|
inc_active_tx = 1'b0;
|
|
|
|
op_table_start_ptr = req_op_tag_reg;
|
|
op_table_start_tag = s_axis_read_desc_tag;
|
|
op_table_start_en = 1'b0;
|
|
|
|
op_table_read_start_ptr = req_op_tag_reg;
|
|
op_table_read_start_commit = 1'b0;
|
|
op_table_read_start_en = 1'b0;
|
|
|
|
// TLP size computation
|
|
if (req_op_count_reg + req_pcie_addr_reg[1:0] <= {max_read_request_size_dw_reg, 2'b00}) begin
|
|
// packet smaller than max read request size
|
|
if (((req_pcie_addr_reg & 12'hfff) + (req_op_count_reg & 12'hfff)) >> 12 != 0 || req_op_count_reg >> 12 != 0) begin
|
|
// crosses 4k boundary, split on 4K boundary
|
|
req_tlp_count = 13'h1000 - req_pcie_addr_reg[11:0];
|
|
req_dword_count = 11'h400 - req_pcie_addr_reg[11:2];
|
|
req_last_tlp = (((req_pcie_addr_reg & 12'hfff) + (req_op_count_reg & 12'hfff)) & 12'hfff) == 0 && req_op_count_reg >> 12 == 0;
|
|
// optimized req_pcie_addr = req_pcie_addr_reg + req_tlp_count
|
|
req_pcie_addr[PCIE_ADDR_WIDTH-1:12] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:12]+1;
|
|
req_pcie_addr[11:0] = 12'd0;
|
|
end else begin
|
|
// does not cross 4k boundary, send one TLP
|
|
req_tlp_count = req_op_count_reg;
|
|
req_dword_count = (req_op_count_reg + req_pcie_addr_reg[1:0] + 3) >> 2;
|
|
req_last_tlp = 1'b1;
|
|
// always last TLP, so next address is irrelevant
|
|
req_pcie_addr[PCIE_ADDR_WIDTH-1:12] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:12];
|
|
req_pcie_addr[11:0] = 12'd0;
|
|
end
|
|
end else begin
|
|
// packet larger than max read request size
|
|
if (((req_pcie_addr_reg & 12'hfff) + {max_read_request_size_dw_reg, 2'b00}) >> 12 != 0) begin
|
|
// crosses 4k boundary, split on 4K boundary
|
|
req_tlp_count = 13'h1000 - req_pcie_addr_reg[11:0];
|
|
req_dword_count = 11'h400 - req_pcie_addr_reg[11:2];
|
|
req_last_tlp = 1'b0;
|
|
// optimized req_pcie_addr = req_pcie_addr_reg + req_tlp_count
|
|
req_pcie_addr[PCIE_ADDR_WIDTH-1:12] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:12]+1;
|
|
req_pcie_addr[11:0] = 12'd0;
|
|
end else begin
|
|
// does not cross 4k boundary, split on 128-byte read completion boundary
|
|
req_tlp_count = {max_read_request_size_dw_reg, 2'b00} - req_pcie_addr_reg[6:0];
|
|
req_dword_count = max_read_request_size_dw_reg - req_pcie_addr_reg[6:2];
|
|
req_last_tlp = 1'b0;
|
|
// optimized req_pcie_addr = req_pcie_addr_reg + req_tlp_count
|
|
req_pcie_addr[PCIE_ADDR_WIDTH-1:12] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:12];
|
|
req_pcie_addr[11:0] = {{req_pcie_addr_reg[11:7], 5'd0} + max_read_request_size_dw_reg, 2'b00};
|
|
end
|
|
end
|
|
|
|
pcie_tag_table_start_ptr_next = req_pcie_tag_reg;
|
|
pcie_tag_table_start_axi_addr_next = req_axi_addr_reg + req_tlp_count;
|
|
pcie_tag_table_start_op_tag_next = req_op_tag_reg;
|
|
pcie_tag_table_start_zero_len_next = req_zero_len_reg;
|
|
pcie_tag_table_start_en_next = 1'b0;
|
|
|
|
req_first_be = 4'b1111 << req_pcie_addr_reg[1:0];
|
|
req_last_be = 4'b1111 >> (3 - ((req_pcie_addr_reg[1:0] + req_tlp_count[1:0] - 1) & 3));
|
|
|
|
// TLP header and sideband data
|
|
tlp_header_data[1:0] = 2'b0; // address type
|
|
tlp_header_data[63:2] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:2]; // address
|
|
tlp_header_data[74:64] = req_dword_count; // DWORD count
|
|
tlp_header_data[78:75] = REQ_MEM_READ; // request type - memory read
|
|
tlp_header_data[79] = 1'b0; // poisoned request
|
|
tlp_header_data[95:80] = requester_id;
|
|
tlp_header_data[103:96] = req_pcie_tag_reg;
|
|
tlp_header_data[119:104] = 16'd0; // completer ID
|
|
tlp_header_data[120] = requester_id_enable;
|
|
tlp_header_data[123:121] = 3'b000; // traffic class
|
|
tlp_header_data[126:124] = 3'b000; // attr
|
|
tlp_header_data[127] = 1'b0; // force ECRC
|
|
|
|
if (AXIS_PCIE_DATA_WIDTH == 512) begin
|
|
tlp_tuser[3:0] = req_zero_len_reg ? 4'b0000 : (req_dword_count == 1 ? req_first_be & req_last_be : req_first_be); // first BE 0
|
|
tlp_tuser[7:4] = 4'd0; // first BE 1
|
|
tlp_tuser[11:8] = req_zero_len_reg ? 4'b0000 : (req_dword_count == 1 ? 4'b0000 : req_last_be); // last BE 0
|
|
tlp_tuser[15:12] = 4'd0; // last BE 1
|
|
tlp_tuser[19:16] = 3'd0; // addr_offset
|
|
tlp_tuser[21:20] = 2'b01; // is_sop
|
|
tlp_tuser[23:22] = 2'd0; // is_sop0_ptr
|
|
tlp_tuser[25:24] = 2'd0; // is_sop1_ptr
|
|
tlp_tuser[27:26] = 2'b01; // is_eop
|
|
tlp_tuser[31:28] = 4'd3; // is_eop0_ptr
|
|
tlp_tuser[35:32] = 4'd0; // is_eop1_ptr
|
|
tlp_tuser[36] = 1'b0; // discontinue
|
|
tlp_tuser[38:37] = 2'b00; // tph_present
|
|
tlp_tuser[42:39] = 4'b0000; // tph_type
|
|
tlp_tuser[44:43] = 2'b00; // tph_indirect_tag_en
|
|
tlp_tuser[60:45] = 16'd0; // tph_st_tag
|
|
tlp_tuser[66:61] = 6'd0; // seq_num0
|
|
tlp_tuser[72:67] = 6'd0; // seq_num1
|
|
tlp_tuser[136:73] = 64'd0; // parity
|
|
end else begin
|
|
tlp_tuser[3:0] = req_zero_len_reg ? 4'b0000 : (req_dword_count == 1 ? req_first_be & req_last_be : req_first_be); // first BE
|
|
tlp_tuser[7:4] = req_zero_len_reg ? 4'b0000 : (req_dword_count == 1 ? 4'b0000 : req_last_be); // last BE
|
|
tlp_tuser[10:8] = 3'd0; // addr_offset
|
|
tlp_tuser[11] = 1'b0; // discontinue
|
|
tlp_tuser[12] = 1'b0; // tph_present
|
|
tlp_tuser[14:13] = 2'b00; // tph_type
|
|
tlp_tuser[15] = 1'b0; // tph_indirect_tag_en
|
|
tlp_tuser[23:16] = 8'd0; // tph_st_tag
|
|
tlp_tuser[27:24] = 4'd0; // seq_num
|
|
tlp_tuser[59:28] = 32'd0; // parity
|
|
if (AXIS_PCIE_RQ_USER_WIDTH == 62) begin
|
|
tlp_tuser[61:60] = 2'd0; // seq_num
|
|
end
|
|
end
|
|
|
|
if (AXIS_PCIE_DATA_WIDTH == 512) begin
|
|
m_axis_rq_tdata_int = tlp_header_data;
|
|
m_axis_rq_tkeep_int = 16'b0000000000001111;
|
|
m_axis_rq_tlast_int = 1'b1;
|
|
end else if (AXIS_PCIE_DATA_WIDTH == 256) begin
|
|
m_axis_rq_tdata_int = tlp_header_data;
|
|
m_axis_rq_tkeep_int = 8'b00001111;
|
|
m_axis_rq_tlast_int = 1'b1;
|
|
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
|
|
m_axis_rq_tdata_int = tlp_header_data;
|
|
m_axis_rq_tkeep_int = 4'b1111;
|
|
m_axis_rq_tlast_int = 1'b1;
|
|
end else if (AXIS_PCIE_DATA_WIDTH == 64) begin
|
|
m_axis_rq_tdata_int = tlp_header_data[63:0];
|
|
m_axis_rq_tkeep_int = 2'b11;
|
|
m_axis_rq_tlast_int = 1'b0;
|
|
end
|
|
m_axis_rq_tvalid_int = 1'b0;
|
|
m_axis_rq_tuser_int = tlp_tuser;
|
|
|
|
// TLP segmentation and request generation
|
|
case (req_state_reg)
|
|
REQ_STATE_IDLE: begin
|
|
s_axis_read_desc_ready_next = init_done_reg && enable && req_op_tag_valid_reg;
|
|
|
|
if (s_axis_read_desc_ready && s_axis_read_desc_valid) begin
|
|
s_axis_read_desc_ready_next = 1'b0;
|
|
req_pcie_addr_next = s_axis_read_desc_pcie_addr;
|
|
req_axi_addr_next = s_axis_read_desc_axi_addr;
|
|
if (s_axis_read_desc_len == 0) begin
|
|
// zero-length operation
|
|
req_op_count_next = 1;
|
|
req_zero_len_next = 1'b1;
|
|
end else begin
|
|
req_op_count_next = s_axis_read_desc_len;
|
|
req_zero_len_next = 1'b0;
|
|
end
|
|
op_table_start_ptr = req_op_tag_reg;
|
|
op_table_start_tag = s_axis_read_desc_tag;
|
|
op_table_start_en = 1'b1;
|
|
req_state_next = REQ_STATE_START;
|
|
end else begin
|
|
req_state_next = REQ_STATE_IDLE;
|
|
end
|
|
end
|
|
REQ_STATE_START: begin
|
|
if (m_axis_rq_tready_int_reg && req_pcie_tag_valid_reg && (!TX_FC_ENABLE || have_credit_reg) && (!RQ_SEQ_NUM_ENABLE || active_tx_count_av_reg)) begin
|
|
|
|
m_axis_rq_tvalid_int = 1'b1;
|
|
|
|
inc_active_tx = 1'b1;
|
|
|
|
if (AXIS_PCIE_DATA_WIDTH > 64) begin
|
|
req_pcie_addr_next = req_pcie_addr;
|
|
req_axi_addr_next = req_axi_addr_reg + req_tlp_count;
|
|
req_op_count_next = req_op_count_reg - req_tlp_count;
|
|
|
|
pcie_tag_table_start_ptr_next = req_pcie_tag_reg;
|
|
pcie_tag_table_start_axi_addr_next = req_axi_addr_reg + req_tlp_count;
|
|
pcie_tag_table_start_op_tag_next = req_op_tag_reg;
|
|
pcie_tag_table_start_zero_len_next = req_zero_len_reg;
|
|
pcie_tag_table_start_en_next = 1'b1;
|
|
|
|
op_table_read_start_ptr = req_op_tag_reg;
|
|
op_table_read_start_commit = req_last_tlp;
|
|
op_table_read_start_en = 1'b1;
|
|
|
|
req_pcie_tag_valid_next = 1'b0;
|
|
|
|
if (!req_last_tlp) begin
|
|
req_state_next = REQ_STATE_START;
|
|
end else begin
|
|
req_op_tag_valid_next = 1'b0;
|
|
s_axis_read_desc_ready_next = init_done_reg && enable && (op_tag_fifo_rd_ptr_reg != op_tag_fifo_wr_ptr_reg);
|
|
req_state_next = REQ_STATE_IDLE;
|
|
end
|
|
end else begin
|
|
req_state_next = REQ_STATE_HEADER;
|
|
end
|
|
end else begin
|
|
req_state_next = REQ_STATE_START;
|
|
end
|
|
end
|
|
REQ_STATE_HEADER: begin
|
|
if (AXIS_PCIE_DATA_WIDTH == 64) begin
|
|
m_axis_rq_tdata_int = tlp_header_data[127:64];
|
|
m_axis_rq_tkeep_int = 2'b11;
|
|
m_axis_rq_tlast_int = 1'b1;
|
|
|
|
if (m_axis_rq_tready_int_reg && req_pcie_tag_valid_reg) begin
|
|
req_pcie_addr_next = req_pcie_addr;
|
|
req_axi_addr_next = req_axi_addr_reg + req_tlp_count;
|
|
req_op_count_next = req_op_count_reg - req_tlp_count;
|
|
|
|
m_axis_rq_tvalid_int = 1'b1;
|
|
|
|
pcie_tag_table_start_ptr_next = req_pcie_tag_reg;
|
|
pcie_tag_table_start_axi_addr_next = req_axi_addr_reg + req_tlp_count;
|
|
pcie_tag_table_start_op_tag_next = req_op_tag_reg;
|
|
pcie_tag_table_start_zero_len_next = req_zero_len_reg;
|
|
pcie_tag_table_start_en_next = 1'b1;
|
|
|
|
op_table_read_start_ptr = req_op_tag_reg;
|
|
op_table_read_start_commit = req_last_tlp;
|
|
op_table_read_start_en = 1'b1;
|
|
|
|
req_pcie_tag_valid_next = 1'b0;
|
|
|
|
if (!req_last_tlp) begin
|
|
req_state_next = REQ_STATE_START;
|
|
end else begin
|
|
req_op_tag_valid_next = 1'b0;
|
|
s_axis_read_desc_ready_next = init_done_reg && enable && (op_tag_fifo_rd_ptr_reg != op_tag_fifo_wr_ptr_reg);
|
|
req_state_next = REQ_STATE_IDLE;
|
|
end
|
|
end else begin
|
|
req_state_next = REQ_STATE_HEADER;
|
|
end
|
|
end
|
|
end
|
|
endcase
|
|
|
|
op_tag_fifo_rd_ptr_next = op_tag_fifo_rd_ptr_reg;
|
|
|
|
if (!req_op_tag_valid_next) begin
|
|
if (op_tag_fifo_rd_ptr_reg != op_tag_fifo_wr_ptr_reg) begin
|
|
req_op_tag_next = op_tag_fifo_mem[op_tag_fifo_rd_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
req_op_tag_valid_next = 1'b1;
|
|
op_tag_fifo_rd_ptr_next = op_tag_fifo_rd_ptr_reg + 1;
|
|
end
|
|
end
|
|
|
|
pcie_tag_fifo_1_rd_ptr_next = pcie_tag_fifo_1_rd_ptr_reg;
|
|
pcie_tag_fifo_2_rd_ptr_next = pcie_tag_fifo_2_rd_ptr_reg;
|
|
|
|
if (!req_pcie_tag_valid_next) begin
|
|
if (pcie_tag_fifo_1_rd_ptr_reg != pcie_tag_fifo_1_wr_ptr_reg) begin
|
|
req_pcie_tag_next = pcie_tag_fifo_1_mem[pcie_tag_fifo_1_rd_ptr_reg[PCIE_TAG_WIDTH_1-1:0]];
|
|
req_pcie_tag_valid_next = 1'b1;
|
|
pcie_tag_fifo_1_rd_ptr_next = pcie_tag_fifo_1_rd_ptr_reg + 1;
|
|
end else if (PCIE_TAG_COUNT_2 > 0 && ext_tag_enable && pcie_tag_fifo_2_rd_ptr_reg != pcie_tag_fifo_2_wr_ptr_reg) begin
|
|
req_pcie_tag_next = pcie_tag_fifo_2_mem[pcie_tag_fifo_2_rd_ptr_reg[PCIE_TAG_WIDTH_2-1:0]];
|
|
req_pcie_tag_valid_next = 1'b1;
|
|
pcie_tag_fifo_2_rd_ptr_next = pcie_tag_fifo_2_rd_ptr_reg + 1;
|
|
end
|
|
end
|
|
end
|
|
|
|
always @* begin
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
|
|
transfer_in_save = 1'b0;
|
|
|
|
s_axis_rc_tready_next = 1'b0;
|
|
|
|
lower_addr_next = lower_addr_reg;
|
|
byte_count_next = byte_count_reg;
|
|
error_code_next = error_code_reg;
|
|
axi_addr_next = axi_addr_reg;
|
|
op_count_next = op_count_reg;
|
|
tr_count_next = tr_count_reg;
|
|
zero_len_next = zero_len_reg;
|
|
op_dword_count_next = op_dword_count_reg;
|
|
cpl_status_next = cpl_status_reg;
|
|
input_cycle_count_next = input_cycle_count_reg;
|
|
output_cycle_count_next = output_cycle_count_reg;
|
|
input_active_next = input_active_reg;
|
|
bubble_cycle_next = bubble_cycle_reg;
|
|
first_cycle_next = first_cycle_reg;
|
|
last_cycle_next = last_cycle_reg;
|
|
pcie_tag_next = pcie_tag_reg;
|
|
op_tag_next = op_tag_reg;
|
|
final_cpl_next = final_cpl_reg;
|
|
finish_tag_next = 1'b0;
|
|
offset_next = offset_reg;
|
|
first_cycle_offset_next = first_cycle_offset_reg;
|
|
last_cycle_offset_next = last_cycle_offset_reg;
|
|
|
|
m_axi_awaddr_next = m_axi_awaddr_reg;
|
|
m_axi_awlen_next = m_axi_awlen_reg;
|
|
m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_awready;
|
|
m_axi_bready_next = 1'b0;
|
|
|
|
m_axi_wdata_int = shift_axis_tdata;
|
|
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}};
|
|
m_axi_wvalid_int = 1'b0;
|
|
m_axi_wlast_int = 1'b0;
|
|
|
|
status_fifo_skip_next = 1'b0;
|
|
status_fifo_finish_next = 1'b0;
|
|
status_fifo_error_next = DMA_ERROR_NONE;
|
|
status_fifo_we_next = 1'b0;
|
|
|
|
status_error_cor_next = 1'b0;
|
|
status_error_uncor_next = 1'b0;
|
|
|
|
// TLP response handling and AXI operation generation
|
|
case (tlp_state_reg)
|
|
TLP_STATE_IDLE: begin
|
|
// idle state, wait for completion
|
|
if (AXIS_PCIE_DATA_WIDTH > 64) begin
|
|
s_axis_rc_tready_next = 1'b0;
|
|
|
|
if (init_done_reg && s_axis_rc_tvalid && !status_fifo_full_reg) begin
|
|
// header fields
|
|
lower_addr_next = s_axis_rc_tdata[11:0]; // lower address
|
|
error_code_next = s_axis_rc_tdata[15:12]; // error code
|
|
byte_count_next = s_axis_rc_tdata[28:16]; // byte count
|
|
//s_axis_rc_tdata[29]; // locked read
|
|
//s_axis_rc_tdata[30]; // request completed
|
|
op_dword_count_next = s_axis_rc_tdata[42:32]; // DWORD count
|
|
cpl_status_next = s_axis_rc_tdata[45:43]; // completion status
|
|
//s_axis_rc_tdata[46]; // poisoned completion
|
|
//s_axis_rc_tdata[63:48]; // requester ID
|
|
pcie_tag_next = s_axis_rc_tdata[71:64]; // tag
|
|
//s_axis_rc_tdata[87:72]; // completer ID
|
|
//s_axis_rc_tdata[91:89]; // tc
|
|
//s_axis_rc_tdata[94:92]; // attr
|
|
|
|
// tuser fields
|
|
//s_axis_rc_tuser[31:0]; // byte enables
|
|
//s_axis_rc_tuser[32]; // is_sof_0
|
|
//s_axis_rc_tuser[33]; // is_sof_1
|
|
//s_axis_rc_tuser[37:34]; // is_eof_0
|
|
//s_axis_rc_tuser[41:38]; // is_eof_1
|
|
//s_axis_rc_tuser[42]; // discontinue
|
|
//s_axis_rc_tuser[74:43]; // parity
|
|
|
|
if (byte_count_next > (op_dword_count_next << 2) - lower_addr_next[1:0]) begin
|
|
// more completions to follow
|
|
op_count_next = (op_dword_count_next << 2) - lower_addr_next[1:0];
|
|
final_cpl_next = 1'b0;
|
|
end else begin
|
|
// last completion
|
|
op_count_next = byte_count_next;
|
|
final_cpl_next = 1'b1;
|
|
end
|
|
|
|
axi_addr_next = pcie_tag_table_axi_addr[pcie_tag_next] - byte_count_next;
|
|
zero_len_next = pcie_tag_table_zero_len[pcie_tag_next];
|
|
|
|
offset_next = axi_addr_next[OFFSET_WIDTH-1:0] - (12+lower_addr_next[1:0]);
|
|
bubble_cycle_next = axi_addr_next[OFFSET_WIDTH-1:0] < 12+lower_addr_next[1:0];
|
|
first_cycle_offset_next = axi_addr_next[OFFSET_WIDTH-1:0];
|
|
first_cycle_next = 1'b1;
|
|
|
|
// AXI transfer size computation
|
|
if (op_count_next <= AXI_MAX_BURST_SIZE-axi_addr_next[OFFSET_WIDTH-1:0] || AXI_MAX_BURST_SIZE >= 4096) begin
|
|
// packet smaller than max burst size
|
|
if ((axi_addr_next ^ (axi_addr_next + op_count_next)) & (1 << 12)) begin
|
|
// crosses 4k boundary
|
|
tr_count_next = 13'h1000 - axi_addr_next[11:0];
|
|
end else begin
|
|
// does not cross 4k boundary, send one request
|
|
tr_count_next = op_count_next;
|
|
end
|
|
end else begin
|
|
// packet larger than max burst size
|
|
if ((axi_addr_next ^ (axi_addr_next + AXI_MAX_BURST_SIZE)) & (1 << 12)) begin
|
|
// crosses 4k boundary
|
|
tr_count_next = 13'h1000 - axi_addr_next[11:0];
|
|
end else begin
|
|
// does not cross 4k boundary, send one request
|
|
tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_next[OFFSET_WIDTH-1:0];
|
|
end
|
|
end
|
|
|
|
op_tag_next = pcie_tag_table_op_tag[pcie_tag_next];
|
|
|
|
if (pcie_tag_table_active_b[pcie_tag_next] == pcie_tag_table_active_a[pcie_tag_next]) begin
|
|
// tag not active, handle as unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
|
|
|
|
// drop TLP and report correctable error
|
|
status_error_cor_next = 1'b1;
|
|
s_axis_rc_tready_next = 1'b1;
|
|
tlp_state_next = TLP_STATE_WAIT_END;
|
|
end else if (error_code_next == RC_ERROR_MISMATCH) begin
|
|
// format/status mismatch, handle as malformed TLP (2.3.2)
|
|
// ATTR or TC mismatch, handle as malformed TLP (2.3.2)
|
|
|
|
// drop TLP and report uncorrectable error
|
|
status_error_uncor_next = 1'b1;
|
|
s_axis_rc_tready_next = 1'b1;
|
|
tlp_state_next = TLP_STATE_WAIT_END;
|
|
end else if (error_code_next == RC_ERROR_POISONED || error_code_next == RC_ERROR_BAD_STATUS ||
|
|
error_code_next == RC_ERROR_TIMEOUT || error_code_next == RC_ERROR_FLR) begin
|
|
// transfer-terminating error
|
|
|
|
if (error_code_next == RC_ERROR_POISONED) begin
|
|
// poisoned TLP, handle as advisory non-fatal (6.2.3.2.4.3)
|
|
// drop TLP and report correctable error
|
|
status_error_cor_next = 1'b1;
|
|
status_fifo_error_next = DMA_ERROR_PCIE_CPL_POISONED;
|
|
end else if (error_code_next == RC_ERROR_BAD_STATUS) begin
|
|
// bad status, handle as advisory non-fatal (6.2.3.2.4.1)
|
|
// drop TLP and report correctable error
|
|
status_error_cor_next = 1'b1;
|
|
if (cpl_status_next == CPL_STATUS_CA) begin
|
|
status_fifo_error_next = DMA_ERROR_PCIE_CPL_STATUS_CA;
|
|
end else begin
|
|
status_fifo_error_next = DMA_ERROR_PCIE_CPL_STATUS_UR;
|
|
end
|
|
end else if (error_code_next == RC_ERROR_TIMEOUT) begin
|
|
// timeout, handle as uncorrectable (6.2.3.2.4.4)
|
|
// drop TLP and report uncorrectable error
|
|
status_error_uncor_next = 1'b1;
|
|
status_fifo_error_next = DMA_ERROR_TIMEOUT;
|
|
end else if (error_code_next == RC_ERROR_FLR) begin
|
|
// FLR; not an actual completion so no error to report
|
|
// drop TLP
|
|
status_fifo_error_next = DMA_ERROR_PCIE_FLR;
|
|
end
|
|
|
|
finish_tag_next = 1'b1;
|
|
|
|
status_fifo_skip_next = 1'b1;
|
|
status_fifo_finish_next = 1'b1;
|
|
status_fifo_we_next = 1'b1;
|
|
|
|
s_axis_rc_tready_next = 1'b1;
|
|
tlp_state_next = TLP_STATE_WAIT_END;
|
|
end else begin
|
|
// no error
|
|
|
|
s_axis_rc_tready_next = !m_axi_awvalid || m_axi_awready;
|
|
tlp_state_next = TLP_STATE_START;
|
|
end
|
|
end else begin
|
|
s_axis_rc_tready_next = 1'b0;
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
end
|
|
end else begin
|
|
s_axis_rc_tready_next = init_done_reg && !status_fifo_full_reg;
|
|
|
|
if (s_axis_rc_tready && s_axis_rc_tvalid) begin
|
|
// header fields
|
|
lower_addr_next = s_axis_rc_tdata[11:0]; // lower address
|
|
error_code_next = s_axis_rc_tdata[15:12]; // error code
|
|
byte_count_next = s_axis_rc_tdata[28:16]; // byte count
|
|
//s_axis_rc_tdata[29]; // locked read
|
|
//s_axis_rc_tdata[30]; // request completed
|
|
op_dword_count_next = s_axis_rc_tdata[42:32]; // DWORD count
|
|
cpl_status_next = s_axis_rc_tdata[45:43]; // completion status
|
|
//s_axis_rc_tdata[46]; // poisoned completion
|
|
//s_axis_rc_tdata[63:48]; // requester ID
|
|
|
|
// tuser fields
|
|
//s_axis_rc_tuser[31:0]; // byte enables
|
|
//s_axis_rc_tuser[32]; // is_sof_0
|
|
//s_axis_rc_tuser[33]; // is_sof_1
|
|
//s_axis_rc_tuser[37:34]; // is_eof_0
|
|
//s_axis_rc_tuser[41:38]; // is_eof_1
|
|
//s_axis_rc_tuser[42]; // discontinue
|
|
//s_axis_rc_tuser[74:43]; // parity
|
|
|
|
if (byte_count_next > (op_dword_count_next << 2) - lower_addr_next[1:0]) begin
|
|
// more completions to follow
|
|
op_count_next = (op_dword_count_next << 2) - lower_addr_next[1:0];
|
|
final_cpl_next = 1'b0;
|
|
end else begin
|
|
// last completion
|
|
op_count_next = byte_count_next;
|
|
final_cpl_next = 1'b1;
|
|
end
|
|
|
|
if (s_axis_rc_tlast) begin
|
|
s_axis_rc_tready_next = init_done_reg && !status_fifo_full_reg;
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
end else begin
|
|
s_axis_rc_tready_next = 1'b0;
|
|
tlp_state_next = TLP_STATE_HEADER;
|
|
end
|
|
end else begin
|
|
s_axis_rc_tready_next = init_done_reg && !status_fifo_full_reg;
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
end
|
|
end
|
|
end
|
|
TLP_STATE_HEADER: begin
|
|
// header state; process header (64 bit interface only)
|
|
s_axis_rc_tready_next = 1'b0;
|
|
|
|
if (s_axis_rc_tvalid) begin
|
|
pcie_tag_next = s_axis_rc_tdata[7:0]; // tag
|
|
//s_axis_rc_tdata[23:8]; // completer ID
|
|
//s_axis_rc_tdata[27:25]; // tc
|
|
//s_axis_rc_tdata[30:28]; // attr
|
|
|
|
axi_addr_next = pcie_tag_table_axi_addr[pcie_tag_next] - byte_count_reg;
|
|
zero_len_next = pcie_tag_table_zero_len[pcie_tag_next];
|
|
|
|
offset_next = axi_addr_next[OFFSET_WIDTH-1:0] - (4+lower_addr_reg[1:0]);
|
|
bubble_cycle_next = axi_addr_next[OFFSET_WIDTH-1:0] < 4+lower_addr_reg[1:0];
|
|
first_cycle_offset_next = axi_addr_next[OFFSET_WIDTH-1:0];
|
|
first_cycle_next = 1'b1;
|
|
|
|
// AXI transfer size computation
|
|
if (op_count_next <= AXI_MAX_BURST_SIZE-axi_addr_next[OFFSET_WIDTH-1:0] || AXI_MAX_BURST_SIZE >= 4096) begin
|
|
// packet smaller than max burst size
|
|
if ((axi_addr_next ^ (axi_addr_next + op_count_next)) & (1 << 12)) begin
|
|
// crosses 4k boundary
|
|
tr_count_next = 13'h1000 - axi_addr_next[11:0];
|
|
end else begin
|
|
// does not cross 4k boundary, send one request
|
|
tr_count_next = op_count_next;
|
|
end
|
|
end else begin
|
|
// packet larger than max burst size
|
|
if ((axi_addr_next ^ (axi_addr_next + AXI_MAX_BURST_SIZE)) & (1 << 12)) begin
|
|
// crosses 4k boundary
|
|
tr_count_next = 13'h1000 - axi_addr_next[11:0];
|
|
end else begin
|
|
// does not cross 4k boundary, send one request
|
|
tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_next[OFFSET_WIDTH-1:0];
|
|
end
|
|
end
|
|
|
|
op_tag_next = pcie_tag_table_op_tag[pcie_tag_next];
|
|
|
|
if (pcie_tag_table_active_b[pcie_tag_next] == pcie_tag_table_active_a[pcie_tag_next]) begin
|
|
// tag not active, handle as unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
|
|
|
|
// drop TLP and report correctable error
|
|
status_error_cor_next = 1'b1;
|
|
s_axis_rc_tready_next = 1'b1;
|
|
tlp_state_next = TLP_STATE_WAIT_END;
|
|
end else if (error_code_next == RC_ERROR_MISMATCH) begin
|
|
// format/status mismatch, handle as malformed TLP (2.3.2)
|
|
// ATTR or TC mismatch, handle as malformed TLP (2.3.2)
|
|
|
|
// drop TLP and report uncorrectable error
|
|
status_error_uncor_next = 1'b1;
|
|
s_axis_rc_tready_next = 1'b1;
|
|
tlp_state_next = TLP_STATE_WAIT_END;
|
|
end else if (error_code_next == RC_ERROR_POISONED || error_code_next == RC_ERROR_BAD_STATUS ||
|
|
error_code_next == RC_ERROR_TIMEOUT || error_code_next == RC_ERROR_FLR) begin
|
|
// transfer-terminating error
|
|
|
|
if (error_code_next == RC_ERROR_POISONED) begin
|
|
// poisoned TLP, handle as advisory non-fatal (6.2.3.2.4.3)
|
|
// drop TLP and report correctable error
|
|
status_error_cor_next = 1'b1;
|
|
status_fifo_error_next = DMA_ERROR_PCIE_CPL_POISONED;
|
|
end else if (error_code_next == RC_ERROR_BAD_STATUS) begin
|
|
// bad status, handle as advisory non-fatal (6.2.3.2.4.1)
|
|
// drop TLP and report correctable error
|
|
status_error_cor_next = 1'b1;
|
|
if (cpl_status_reg == CPL_STATUS_CA) begin
|
|
status_fifo_error_next = DMA_ERROR_PCIE_CPL_STATUS_CA;
|
|
end else begin
|
|
status_fifo_error_next = DMA_ERROR_PCIE_CPL_STATUS_UR;
|
|
end
|
|
end else if (error_code_next == RC_ERROR_TIMEOUT) begin
|
|
// timeout, handle as uncorrectable (6.2.3.2.4.4)
|
|
// drop TLP and report uncorrectable error
|
|
status_error_uncor_next = 1'b1;
|
|
status_fifo_error_next = DMA_ERROR_TIMEOUT;
|
|
end else if (error_code_next == RC_ERROR_FLR) begin
|
|
// FLR; not an actual completion so no error to report
|
|
// drop TLP
|
|
status_fifo_error_next = DMA_ERROR_PCIE_FLR;
|
|
end
|
|
|
|
finish_tag_next = 1'b1;
|
|
|
|
status_fifo_skip_next = 1'b1;
|
|
status_fifo_finish_next = 1'b1;
|
|
status_fifo_we_next = 1'b1;
|
|
|
|
s_axis_rc_tready_next = 1'b1;
|
|
tlp_state_next = TLP_STATE_WAIT_END;
|
|
end else begin
|
|
// no error
|
|
|
|
s_axis_rc_tready_next = !m_axi_awvalid || m_axi_awready;
|
|
tlp_state_next = TLP_STATE_START;
|
|
end
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_HEADER;
|
|
end
|
|
end
|
|
TLP_STATE_START: begin
|
|
s_axis_rc_tready_next = !m_axi_awvalid || m_axi_awready;
|
|
|
|
if (s_axis_rc_tready && s_axis_rc_tvalid) begin
|
|
transfer_in_save = 1'b1;
|
|
|
|
if (AXIS_PCIE_DATA_WIDTH == 64) begin
|
|
input_cycle_count_next = (tr_count_next + 4+lower_addr_reg[1:0] - 1) >> (AXI_BURST_SIZE);
|
|
end else begin
|
|
input_cycle_count_next = (tr_count_next + 12+lower_addr_reg[1:0] - 1) >> (AXI_BURST_SIZE);
|
|
end
|
|
output_cycle_count_next = (tr_count_next + axi_addr_reg[OFFSET_WIDTH-1:0] - 1) >> (AXI_BURST_SIZE);
|
|
last_cycle_offset_next = axi_addr_reg[OFFSET_WIDTH-1:0] + tr_count_next;
|
|
last_cycle_next = output_cycle_count_next == 0;
|
|
input_active_next = 1'b1;
|
|
|
|
m_axi_awaddr_next = axi_addr_reg;
|
|
m_axi_awlen_next = output_cycle_count_next;
|
|
m_axi_awvalid_next = 1'b1;
|
|
|
|
axi_addr_next = axi_addr_reg + tr_count_next;
|
|
op_count_next = op_count_reg - tr_count_next;
|
|
|
|
// AXI transfer size computation
|
|
if (op_count_next <= AXI_MAX_BURST_SIZE-axi_addr_next[OFFSET_WIDTH-1:0] || AXI_MAX_BURST_SIZE >= 4096) begin
|
|
// packet smaller than max burst size
|
|
if (((axi_addr_next & 12'hfff) + (op_count_next & 12'hfff)) >> 12 != 0 || op_count_next >> 12 != 0) begin
|
|
// crosses 4k boundary
|
|
tr_count_next = 13'h1000 - axi_addr_next[11:0];
|
|
end else begin
|
|
// does not cross 4k boundary, send one request
|
|
tr_count_next = op_count_next;
|
|
end
|
|
end else begin
|
|
// packet larger than max burst size
|
|
if (((axi_addr_next & 12'hfff) + AXI_MAX_BURST_SIZE) >> 12 != 0) begin
|
|
// crosses 4k boundary
|
|
tr_count_next = 13'h1000 - axi_addr_next[11:0];
|
|
end else begin
|
|
// does not cross 4k boundary, send one request
|
|
tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_next[OFFSET_WIDTH-1:0];
|
|
end
|
|
end
|
|
|
|
input_active_next = input_cycle_count_next != 0;
|
|
input_cycle_count_next = input_cycle_count_next - 1;
|
|
s_axis_rc_tready_next = m_axi_wready_int_early && input_active_next && bubble_cycle_reg && (!last_cycle_next || op_count_next == 0 || !m_axi_awvalid || m_axi_awready);
|
|
tlp_state_next = TLP_STATE_TRANSFER;
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_START;
|
|
end
|
|
end
|
|
TLP_STATE_TRANSFER: begin
|
|
s_axis_rc_tready_next = m_axi_wready_int_early && input_active_reg && !(first_cycle_reg && !bubble_cycle_reg) && (!last_cycle_reg || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready);
|
|
|
|
if (m_axi_wready_int_reg && ((s_axis_rc_tready && s_axis_rc_tvalid) || !input_active_reg || (first_cycle_reg && !bubble_cycle_reg)) && (!last_cycle_reg || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready)) begin
|
|
transfer_in_save = s_axis_rc_tready && s_axis_rc_tvalid;
|
|
|
|
if (first_cycle_reg && !bubble_cycle_reg) begin
|
|
m_axi_wdata_int = {save_axis_tdata_reg, {AXIS_PCIE_DATA_WIDTH{1'b0}}} >> ((AXI_STRB_WIDTH-offset_reg)*8);
|
|
end else begin
|
|
m_axi_wdata_int = shift_axis_tdata;
|
|
end
|
|
if (zero_len_reg) begin
|
|
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b0}};
|
|
end else if (first_cycle_reg) begin
|
|
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}} << first_cycle_offset_reg;
|
|
end else begin
|
|
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}};
|
|
end
|
|
|
|
if (input_active_reg && !(first_cycle_reg && !bubble_cycle_reg)) begin
|
|
input_cycle_count_next = input_cycle_count_reg - 1;
|
|
input_active_next = input_cycle_count_reg != 0;
|
|
end
|
|
output_cycle_count_next = output_cycle_count_reg - 1;
|
|
last_cycle_next = output_cycle_count_next == 0;
|
|
|
|
if (last_cycle_reg) begin
|
|
if (last_cycle_offset_reg != 0 && op_count_reg == 0 && !zero_len_reg) begin
|
|
m_axi_wstrb_int = m_axi_wstrb_int & {AXI_STRB_WIDTH{1'b1}} >> (AXI_STRB_WIDTH-last_cycle_offset_reg);
|
|
end
|
|
m_axi_wlast_int = 1'b1;
|
|
end
|
|
m_axi_wvalid_int = 1'b1;
|
|
first_cycle_next = 1'b0;
|
|
if (!last_cycle_reg) begin
|
|
// current transfer not finished yet
|
|
s_axis_rc_tready_next = m_axi_wready_int_early && input_active_next && (!last_cycle_next || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready);
|
|
tlp_state_next = TLP_STATE_TRANSFER;
|
|
end else if (op_count_reg != 0) begin
|
|
// current transfer done, but operation not finished yet
|
|
|
|
// keep offset, no bubble cycles, not first cycle
|
|
bubble_cycle_next = 1'b0;
|
|
first_cycle_next = 1'b0;
|
|
|
|
input_cycle_count_next = (tr_count_next - offset_reg - 1) >> (AXI_BURST_SIZE);
|
|
output_cycle_count_next = (tr_count_next + axi_addr_reg[OFFSET_WIDTH-1:0] - 1) >> (AXI_BURST_SIZE);
|
|
last_cycle_offset_next = axi_addr_reg[OFFSET_WIDTH-1:0] + tr_count_next;
|
|
last_cycle_next = output_cycle_count_next == 0;
|
|
input_active_next = tr_count_next > offset_reg;
|
|
|
|
m_axi_awaddr_next = axi_addr_reg;
|
|
m_axi_awlen_next = output_cycle_count_next;
|
|
m_axi_awvalid_next = 1'b1;
|
|
|
|
axi_addr_next = axi_addr_reg + tr_count_next;
|
|
op_count_next = op_count_reg - tr_count_next;
|
|
|
|
// AXI transfer size computation
|
|
if (op_count_next <= AXI_MAX_BURST_SIZE-axi_addr_next[OFFSET_WIDTH-1:0] || AXI_MAX_BURST_SIZE >= 4096) begin
|
|
// packet smaller than max burst size
|
|
if (((axi_addr_next & 12'hfff) + (op_count_next & 12'hfff)) >> 12 != 0 || op_count_next >> 12 != 0) begin
|
|
// crosses 4k boundary
|
|
tr_count_next = 13'h1000 - axi_addr_next[11:0];
|
|
end else begin
|
|
// does not cross 4k boundary, send one request
|
|
tr_count_next = op_count_next;
|
|
end
|
|
end else begin
|
|
// packet larger than max burst size
|
|
if (((axi_addr_next & 12'hfff) + AXI_MAX_BURST_SIZE) >> 12 != 0) begin
|
|
// crosses 4k boundary
|
|
tr_count_next = 13'h1000 - axi_addr_next[11:0];
|
|
end else begin
|
|
// does not cross 4k boundary, send one request
|
|
tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_next[OFFSET_WIDTH-1:0];
|
|
end
|
|
end
|
|
|
|
status_fifo_skip_next = 1'b0;
|
|
status_fifo_finish_next = 1'b0;
|
|
status_fifo_error_next = DMA_ERROR_NONE;
|
|
status_fifo_we_next = 1'b1;
|
|
|
|
s_axis_rc_tready_next = m_axi_wready_int_early && input_active_next && (!last_cycle_next || op_count_next == 0 || !m_axi_awvalid || m_axi_awready);
|
|
tlp_state_next = TLP_STATE_TRANSFER;
|
|
end else begin
|
|
|
|
status_fifo_skip_next = 1'b0;
|
|
status_fifo_finish_next = 1'b0;
|
|
status_fifo_error_next = DMA_ERROR_NONE;
|
|
status_fifo_we_next = 1'b1;
|
|
|
|
if (final_cpl_reg) begin
|
|
// last completion in current read request (PCIe tag)
|
|
|
|
// release tag
|
|
finish_tag_next = 1'b1;
|
|
status_fifo_finish_next = 1'b1;
|
|
end
|
|
|
|
if (AXIS_PCIE_DATA_WIDTH > 64) begin
|
|
s_axis_rc_tready_next = 1'b0;
|
|
end else begin
|
|
s_axis_rc_tready_next = init_done_reg && !status_fifo_full_reg;
|
|
end
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
end
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_TRANSFER;
|
|
end
|
|
end
|
|
TLP_STATE_WAIT_END: begin
|
|
// wait end state, wait for end of TLP
|
|
s_axis_rc_tready_next = 1'b1;
|
|
|
|
if (s_axis_rc_tready & s_axis_rc_tvalid) begin
|
|
if (s_axis_rc_tlast) begin
|
|
if (AXIS_PCIE_DATA_WIDTH > 64) begin
|
|
s_axis_rc_tready_next = 1'b0;
|
|
end else begin
|
|
s_axis_rc_tready_next = init_done_reg && !status_fifo_full_reg;
|
|
end
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_WAIT_END;
|
|
end
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_WAIT_END;
|
|
end
|
|
end
|
|
endcase
|
|
|
|
pcie_tag_table_finish_ptr = pcie_tag_reg;
|
|
pcie_tag_table_finish_en = 1'b0;
|
|
|
|
pcie_tag_fifo_wr_tag = pcie_tag_reg;
|
|
pcie_tag_fifo_1_we = 1'b0;
|
|
pcie_tag_fifo_2_we = 1'b0;
|
|
|
|
if (init_pcie_tag_reg) begin
|
|
// initialize FIFO
|
|
pcie_tag_fifo_wr_tag = init_count_reg;
|
|
if (pcie_tag_fifo_wr_tag < PCIE_TAG_COUNT_1 || !PCIE_TAG_COUNT_2) begin
|
|
pcie_tag_fifo_1_we = 1'b1;
|
|
end else if (pcie_tag_fifo_wr_tag) begin
|
|
pcie_tag_fifo_2_we = 1'b1;
|
|
end
|
|
end else if (finish_tag_reg) begin
|
|
pcie_tag_table_finish_ptr = pcie_tag_reg;
|
|
pcie_tag_table_finish_en = 1'b1;
|
|
|
|
pcie_tag_fifo_wr_tag = pcie_tag_reg;
|
|
if (pcie_tag_fifo_wr_tag < PCIE_TAG_COUNT_1 || !PCIE_TAG_COUNT_2) begin
|
|
pcie_tag_fifo_1_we = 1'b1;
|
|
end else begin
|
|
pcie_tag_fifo_2_we = 1'b1;
|
|
end
|
|
end
|
|
|
|
status_fifo_rd_ptr_next = status_fifo_rd_ptr_reg;
|
|
|
|
status_fifo_wr_op_tag = op_tag_reg;
|
|
status_fifo_wr_skip = status_fifo_skip_reg;
|
|
status_fifo_wr_finish = status_fifo_finish_reg;
|
|
status_fifo_wr_error = status_fifo_error_reg;
|
|
status_fifo_we = 1'b0;
|
|
|
|
if (status_fifo_we_reg) begin
|
|
status_fifo_wr_op_tag = op_tag_reg;
|
|
status_fifo_wr_skip = status_fifo_skip_reg;
|
|
status_fifo_wr_finish = status_fifo_finish_reg;
|
|
status_fifo_wr_error = status_fifo_error_reg;
|
|
status_fifo_we = 1'b1;
|
|
end
|
|
|
|
status_fifo_rd_op_tag_next = status_fifo_rd_op_tag_reg;
|
|
status_fifo_rd_skip_next = status_fifo_rd_skip_reg;
|
|
status_fifo_rd_finish_next = status_fifo_rd_finish_reg;
|
|
status_fifo_rd_error_next = status_fifo_rd_error_reg;
|
|
status_fifo_rd_valid_next = status_fifo_rd_valid_reg;
|
|
|
|
m_axis_read_desc_status_tag_next = op_table_tag[status_fifo_rd_op_tag_reg];
|
|
if (status_fifo_rd_error_reg != DMA_ERROR_NONE) begin
|
|
m_axis_read_desc_status_error_next = status_fifo_rd_error_reg;
|
|
end else if (m_axi_bready && m_axi_bvalid && m_axi_bresp == AXI_RESP_SLVERR) begin
|
|
m_axis_read_desc_status_error_next = DMA_ERROR_AXI_WR_SLVERR;
|
|
end else if (m_axi_bready && m_axi_bvalid && m_axi_bresp == AXI_RESP_DECERR) begin
|
|
m_axis_read_desc_status_error_next = DMA_ERROR_AXI_WR_DECERR;
|
|
end else if (op_table_error_a[status_fifo_rd_op_tag_reg] != op_table_error_b[status_fifo_rd_op_tag_reg]) begin
|
|
m_axis_read_desc_status_error_next = op_table_error_code[status_fifo_rd_op_tag_reg];
|
|
end else begin
|
|
m_axis_read_desc_status_error_next = DMA_ERROR_NONE;
|
|
end
|
|
m_axis_read_desc_status_valid_next = 1'b0;
|
|
|
|
op_table_update_status_ptr = status_fifo_rd_op_tag_reg;
|
|
if (status_fifo_rd_error_reg != DMA_ERROR_NONE) begin
|
|
op_table_update_status_error = status_fifo_rd_error_reg;
|
|
end else if (m_axi_bready && m_axi_bvalid && m_axi_bresp == AXI_RESP_SLVERR) begin
|
|
op_table_update_status_error = DMA_ERROR_AXI_WR_SLVERR;
|
|
end else if (m_axi_bready && m_axi_bvalid && m_axi_bresp == AXI_RESP_DECERR) begin
|
|
op_table_update_status_error = DMA_ERROR_AXI_WR_DECERR;
|
|
end else begin
|
|
op_table_update_status_error = DMA_ERROR_NONE;
|
|
end
|
|
op_table_update_status_en = 1'b0;
|
|
|
|
op_table_read_finish_ptr = status_fifo_rd_op_tag_reg;
|
|
op_table_read_finish_en = 1'b0;
|
|
|
|
op_tag_fifo_wr_tag = status_fifo_rd_op_tag_reg;
|
|
op_tag_fifo_we = 1'b0;
|
|
|
|
m_axi_bready_next = m_axi_bready_reg;
|
|
|
|
if (init_op_tag_reg) begin
|
|
// initialize FIFO
|
|
op_tag_fifo_wr_tag = init_count_reg;
|
|
op_tag_fifo_we = 1'b1;
|
|
end else if (status_fifo_rd_valid_reg && (status_fifo_rd_skip_reg || (m_axi_bready && m_axi_bvalid))) begin
|
|
// got write completion, pop and return status
|
|
status_fifo_rd_valid_next = 1'b0;
|
|
op_table_update_status_en = 1'b1;
|
|
m_axi_bready_next = 1'b0;
|
|
|
|
if (status_fifo_rd_finish_reg) begin
|
|
// mark done
|
|
op_table_read_finish_en = 1'b1;
|
|
|
|
if (op_table_read_commit[op_table_read_finish_ptr] && (op_table_read_count_start[op_table_read_finish_ptr] == op_table_read_count_finish[op_table_read_finish_ptr])) begin
|
|
op_tag_fifo_we = 1'b1;
|
|
m_axis_read_desc_status_valid_next = 1'b1;
|
|
end
|
|
end
|
|
end
|
|
|
|
if (!status_fifo_rd_valid_next && status_fifo_rd_ptr_reg != status_fifo_wr_ptr_reg) begin
|
|
// status FIFO not empty
|
|
status_fifo_rd_op_tag_next = status_fifo_op_tag[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
|
|
status_fifo_rd_skip_next = status_fifo_skip[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
|
|
status_fifo_rd_finish_next = status_fifo_finish[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
|
|
status_fifo_rd_error_next = status_fifo_error[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
|
|
status_fifo_rd_valid_next = 1'b1;
|
|
status_fifo_rd_ptr_next = status_fifo_rd_ptr_reg + 1;
|
|
end
|
|
|
|
m_axi_bready_next = status_fifo_rd_valid_next && !status_fifo_rd_skip_next;
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
req_state_reg <= req_state_next;
|
|
tlp_state_reg <= tlp_state_next;
|
|
|
|
if (!init_done_reg) begin
|
|
{init_done_reg, init_count_reg} <= init_count_reg + 1;
|
|
init_pcie_tag_reg <= init_count_reg + 1 < 2**PCIE_TAG_WIDTH;
|
|
init_op_tag_reg <= init_count_reg + 1 < 2**OP_TAG_WIDTH;
|
|
end
|
|
|
|
status_error_cor_reg <= status_error_cor_next;
|
|
status_error_uncor_reg <= status_error_uncor_next;
|
|
|
|
req_pcie_addr_reg <= req_pcie_addr_next;
|
|
req_axi_addr_reg <= req_axi_addr_next;
|
|
req_op_count_reg <= req_op_count_next;
|
|
req_zero_len_reg <= req_zero_len_next;
|
|
req_op_tag_reg <= req_op_tag_next;
|
|
req_op_tag_valid_reg <= req_op_tag_valid_next;
|
|
req_pcie_tag_reg <= req_pcie_tag_next;
|
|
req_pcie_tag_valid_reg <= req_pcie_tag_valid_next;
|
|
|
|
lower_addr_reg <= lower_addr_next;
|
|
byte_count_reg <= byte_count_next;
|
|
error_code_reg <= error_code_next;
|
|
axi_addr_reg <= axi_addr_next;
|
|
op_count_reg <= op_count_next;
|
|
tr_count_reg <= tr_count_next;
|
|
zero_len_reg <= zero_len_next;
|
|
op_dword_count_reg <= op_dword_count_next;
|
|
cpl_status_reg <= cpl_status_next;
|
|
input_cycle_count_reg <= input_cycle_count_next;
|
|
output_cycle_count_reg <= output_cycle_count_next;
|
|
input_active_reg <= input_active_next;
|
|
bubble_cycle_reg <= bubble_cycle_next;
|
|
first_cycle_reg <= first_cycle_next;
|
|
last_cycle_reg <= last_cycle_next;
|
|
pcie_tag_reg <= pcie_tag_next;
|
|
op_tag_reg <= op_tag_next;
|
|
final_cpl_reg <= final_cpl_next;
|
|
finish_tag_reg <= finish_tag_next;
|
|
|
|
offset_reg <= offset_next;
|
|
first_cycle_offset_reg <= first_cycle_offset_next;
|
|
last_cycle_offset_reg <= last_cycle_offset_next;
|
|
|
|
s_axis_rc_tready_reg <= s_axis_rc_tready_next;
|
|
|
|
s_axis_read_desc_ready_reg <= s_axis_read_desc_ready_next;
|
|
|
|
m_axis_read_desc_status_tag_reg <= m_axis_read_desc_status_tag_next;
|
|
m_axis_read_desc_status_error_reg <= m_axis_read_desc_status_error_next;
|
|
m_axis_read_desc_status_valid_reg <= m_axis_read_desc_status_valid_next;
|
|
|
|
m_axi_awaddr_reg <= m_axi_awaddr_next;
|
|
m_axi_awlen_reg <= m_axi_awlen_next;
|
|
m_axi_awvalid_reg <= m_axi_awvalid_next;
|
|
m_axi_bready_reg <= m_axi_bready_next;
|
|
|
|
max_read_request_size_dw_reg <= 11'd32 << (max_read_request_size > 5 ? 5 : max_read_request_size);
|
|
|
|
have_credit_reg <= pcie_tx_fc_nph_av > 4;
|
|
|
|
if (status_fifo_we) begin
|
|
status_fifo_op_tag[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_op_tag;
|
|
status_fifo_skip[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_skip;
|
|
status_fifo_finish[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_finish;
|
|
status_fifo_error[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_error;
|
|
status_fifo_wr_ptr_reg <= status_fifo_wr_ptr_reg + 1;
|
|
end
|
|
status_fifo_rd_ptr_reg <= status_fifo_rd_ptr_next;
|
|
|
|
status_fifo_skip_reg <= status_fifo_skip_next;
|
|
status_fifo_finish_reg <= status_fifo_finish_next;
|
|
status_fifo_error_reg <= status_fifo_error_next;
|
|
status_fifo_we_reg <= status_fifo_we_next;
|
|
|
|
status_fifo_rd_op_tag_reg <= status_fifo_rd_op_tag_next;
|
|
status_fifo_rd_skip_reg <= status_fifo_rd_skip_next;
|
|
status_fifo_rd_finish_reg <= status_fifo_rd_finish_next;
|
|
status_fifo_rd_error_reg <= status_fifo_rd_error_next;
|
|
status_fifo_rd_valid_reg <= status_fifo_rd_valid_next;
|
|
|
|
status_fifo_full_reg <= $unsigned(status_fifo_wr_ptr_reg - status_fifo_rd_ptr_reg) >= 2**STATUS_FIFO_ADDR_WIDTH-4;
|
|
|
|
if (inc_active_tx && !s_axis_rq_seq_num_valid_0 && !s_axis_rq_seq_num_valid_1) begin
|
|
// inc by 1
|
|
active_tx_count_reg <= active_tx_count_reg + 1;
|
|
active_tx_count_av_reg <= active_tx_count_reg < (TX_LIMIT-1);
|
|
end else if ((inc_active_tx && s_axis_rq_seq_num_valid_0 && s_axis_rq_seq_num_valid_1) || (!inc_active_tx && (s_axis_rq_seq_num_valid_0 ^ s_axis_rq_seq_num_valid_1))) begin
|
|
// dec by 1
|
|
active_tx_count_reg <= active_tx_count_reg - 1;
|
|
active_tx_count_av_reg <= 1'b1;
|
|
end else if (!inc_active_tx && s_axis_rq_seq_num_valid_0 && s_axis_rq_seq_num_valid_1) begin
|
|
// dec by 2
|
|
active_tx_count_reg <= active_tx_count_reg - 2;
|
|
active_tx_count_av_reg <= 1'b1;
|
|
end else begin
|
|
active_tx_count_av_reg <= active_tx_count_reg < TX_LIMIT;
|
|
end
|
|
|
|
if (transfer_in_save) begin
|
|
save_axis_tdata_reg <= s_axis_rc_tdata;
|
|
end
|
|
|
|
pcie_tag_table_start_ptr_reg <= pcie_tag_table_start_ptr_next;
|
|
pcie_tag_table_start_axi_addr_reg <= pcie_tag_table_start_axi_addr_next;
|
|
pcie_tag_table_start_op_tag_reg <= pcie_tag_table_start_op_tag_next;
|
|
pcie_tag_table_start_zero_len_reg <= pcie_tag_table_start_zero_len_next;
|
|
pcie_tag_table_start_en_reg <= pcie_tag_table_start_en_next;
|
|
|
|
if (init_pcie_tag_reg) begin
|
|
pcie_tag_table_active_a[init_count_reg] <= 0;
|
|
end else if (pcie_tag_table_start_en_reg) begin
|
|
pcie_tag_table_axi_addr[pcie_tag_table_start_ptr_reg] <= pcie_tag_table_start_axi_addr_reg;
|
|
pcie_tag_table_op_tag[pcie_tag_table_start_ptr_reg] <= pcie_tag_table_start_op_tag_reg;
|
|
pcie_tag_table_zero_len[pcie_tag_table_start_ptr_reg] <= pcie_tag_table_start_zero_len_reg;
|
|
pcie_tag_table_active_a[pcie_tag_table_start_ptr_reg] <= !pcie_tag_table_active_b[pcie_tag_table_start_ptr_reg];
|
|
end
|
|
|
|
if (init_pcie_tag_reg) begin
|
|
pcie_tag_table_active_b[init_count_reg] <= 0;
|
|
end else if (pcie_tag_table_finish_en) begin
|
|
pcie_tag_table_active_b[pcie_tag_table_finish_ptr] <= pcie_tag_table_active_a[pcie_tag_table_finish_ptr];
|
|
end
|
|
|
|
if (pcie_tag_fifo_1_we) begin
|
|
pcie_tag_fifo_1_mem[pcie_tag_fifo_1_wr_ptr_reg[PCIE_TAG_WIDTH_1-1:0]] <= pcie_tag_fifo_wr_tag;
|
|
pcie_tag_fifo_1_wr_ptr_reg <= pcie_tag_fifo_1_wr_ptr_reg + 1;
|
|
end
|
|
pcie_tag_fifo_1_rd_ptr_reg <= pcie_tag_fifo_1_rd_ptr_next;
|
|
if (PCIE_TAG_COUNT_2) begin
|
|
if (pcie_tag_fifo_2_we) begin
|
|
pcie_tag_fifo_2_mem[pcie_tag_fifo_2_wr_ptr_reg[PCIE_TAG_WIDTH_2-1:0]] <= pcie_tag_fifo_wr_tag;
|
|
pcie_tag_fifo_2_wr_ptr_reg <= pcie_tag_fifo_2_wr_ptr_reg + 1;
|
|
end
|
|
pcie_tag_fifo_2_rd_ptr_reg <= pcie_tag_fifo_2_rd_ptr_next;
|
|
end
|
|
|
|
if (init_op_tag_reg) begin
|
|
op_table_read_init_a[init_count_reg] <= 1'b0;
|
|
op_table_error_a[init_count_reg] <= 1'b0;
|
|
end else if (op_table_start_en) begin
|
|
op_table_tag[op_table_start_ptr] <= op_table_start_tag;
|
|
op_table_read_init_a[op_table_start_ptr] <= !op_table_read_init_b[op_table_start_ptr];
|
|
op_table_error_a[op_table_start_ptr] <= op_table_error_b[op_table_start_ptr];
|
|
end
|
|
|
|
if (init_op_tag_reg) begin
|
|
op_table_read_init_b[init_count_reg] <= 1'b0;
|
|
op_table_read_count_start[init_count_reg] <= 0;
|
|
end else if (op_table_read_start_en) begin
|
|
op_table_read_init_b[op_table_read_start_ptr] <= op_table_read_init_a[op_table_read_start_ptr];
|
|
op_table_read_commit[op_table_read_start_ptr] <= op_table_read_start_commit;
|
|
if (op_table_read_init_b[op_table_read_start_ptr] != op_table_read_init_a[op_table_read_start_ptr]) begin
|
|
op_table_read_count_start[op_table_read_start_ptr] <= op_table_read_count_finish[op_table_read_start_ptr];
|
|
end else begin
|
|
op_table_read_count_start[op_table_read_start_ptr] <= op_table_read_count_start[op_table_read_start_ptr] + 1;
|
|
end
|
|
end
|
|
|
|
if (init_op_tag_reg) begin
|
|
op_table_error_b[init_count_reg] <= 1'b0;
|
|
end else if (op_table_update_status_en) begin
|
|
if (op_table_update_status_error != 0) begin
|
|
op_table_error_code[op_table_update_status_ptr] <= op_table_update_status_error;
|
|
op_table_error_b[op_table_update_status_ptr] <= !op_table_error_a[op_table_update_status_ptr];
|
|
end
|
|
end
|
|
|
|
if (init_op_tag_reg) begin
|
|
op_table_read_count_finish[init_count_reg] <= 0;
|
|
end else if (op_table_read_finish_en) begin
|
|
op_table_read_count_finish[op_table_read_finish_ptr] <= op_table_read_count_finish[op_table_read_finish_ptr] + 1;
|
|
end
|
|
|
|
if (op_tag_fifo_we) begin
|
|
op_tag_fifo_mem[op_tag_fifo_wr_ptr_reg[OP_TAG_WIDTH-1:0]] <= op_tag_fifo_wr_tag;
|
|
op_tag_fifo_wr_ptr_reg <= op_tag_fifo_wr_ptr_reg + 1;
|
|
end
|
|
op_tag_fifo_rd_ptr_reg <= op_tag_fifo_rd_ptr_next;
|
|
|
|
if (rst) begin
|
|
req_state_reg <= REQ_STATE_IDLE;
|
|
tlp_state_reg <= TLP_STATE_IDLE;
|
|
|
|
init_count_reg <= 0;
|
|
init_done_reg <= 1'b0;
|
|
init_pcie_tag_reg <= 1'b1;
|
|
init_op_tag_reg <= 1'b1;
|
|
|
|
req_op_tag_valid_reg <= 1'b0;
|
|
req_pcie_tag_valid_reg <= 1'b0;
|
|
|
|
finish_tag_reg <= 1'b0;
|
|
|
|
s_axis_rc_tready_reg <= 1'b0;
|
|
|
|
s_axis_read_desc_ready_reg <= 1'b0;
|
|
m_axis_read_desc_status_valid_reg <= 1'b0;
|
|
|
|
m_axi_awvalid_reg <= 1'b0;
|
|
m_axi_bready_reg <= 1'b0;
|
|
|
|
status_fifo_wr_ptr_reg <= 0;
|
|
status_fifo_rd_ptr_reg <= 0;
|
|
status_fifo_we_reg <= 1'b0;
|
|
status_fifo_rd_valid_reg <= 1'b0;
|
|
|
|
active_tx_count_reg <= {RQ_SEQ_NUM_WIDTH{1'b0}};
|
|
active_tx_count_av_reg <= 1'b1;
|
|
|
|
pcie_tag_table_start_en_reg <= 1'b0;
|
|
|
|
pcie_tag_fifo_1_wr_ptr_reg <= 0;
|
|
pcie_tag_fifo_1_rd_ptr_reg <= 0;
|
|
pcie_tag_fifo_2_wr_ptr_reg <= 0;
|
|
pcie_tag_fifo_2_rd_ptr_reg <= 0;
|
|
|
|
op_tag_fifo_wr_ptr_reg <= 0;
|
|
op_tag_fifo_rd_ptr_reg <= 0;
|
|
|
|
status_error_cor_reg <= 1'b0;
|
|
status_error_uncor_reg <= 1'b0;
|
|
end
|
|
end
|
|
|
|
// output datapath logic (PCIe TLP)
|
|
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
|
|
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
|
|
reg m_axis_rq_tvalid_reg = 1'b0, m_axis_rq_tvalid_next;
|
|
reg m_axis_rq_tlast_reg = 1'b0;
|
|
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser_reg = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}};
|
|
|
|
reg [AXIS_PCIE_DATA_WIDTH-1:0] temp_m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
|
|
reg [AXIS_PCIE_KEEP_WIDTH-1:0] temp_m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
|
|
reg temp_m_axis_rq_tvalid_reg = 1'b0, temp_m_axis_rq_tvalid_next;
|
|
reg temp_m_axis_rq_tlast_reg = 1'b0;
|
|
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] temp_m_axis_rq_tuser_reg = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}};
|
|
|
|
// datapath control
|
|
reg store_axis_rq_int_to_output;
|
|
reg store_axis_rq_int_to_temp;
|
|
reg store_axis_rq_temp_to_output;
|
|
|
|
assign m_axis_rq_tdata = m_axis_rq_tdata_reg;
|
|
assign m_axis_rq_tkeep = m_axis_rq_tkeep_reg;
|
|
assign m_axis_rq_tvalid = m_axis_rq_tvalid_reg;
|
|
assign m_axis_rq_tlast = m_axis_rq_tlast_reg;
|
|
assign m_axis_rq_tuser = m_axis_rq_tuser_reg;
|
|
|
|
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
|
assign m_axis_rq_tready_int_early = m_axis_rq_tready || (!temp_m_axis_rq_tvalid_reg && (!m_axis_rq_tvalid_reg || !m_axis_rq_tvalid_int));
|
|
|
|
always @* begin
|
|
// transfer sink ready state to source
|
|
m_axis_rq_tvalid_next = m_axis_rq_tvalid_reg;
|
|
temp_m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg;
|
|
|
|
store_axis_rq_int_to_output = 1'b0;
|
|
store_axis_rq_int_to_temp = 1'b0;
|
|
store_axis_rq_temp_to_output = 1'b0;
|
|
|
|
if (m_axis_rq_tready_int_reg) begin
|
|
// input is ready
|
|
if (m_axis_rq_tready || !m_axis_rq_tvalid_reg) begin
|
|
// output is ready or currently not valid, transfer data to output
|
|
m_axis_rq_tvalid_next = m_axis_rq_tvalid_int;
|
|
store_axis_rq_int_to_output = 1'b1;
|
|
end else begin
|
|
// output is not ready, store input in temp
|
|
temp_m_axis_rq_tvalid_next = m_axis_rq_tvalid_int;
|
|
store_axis_rq_int_to_temp = 1'b1;
|
|
end
|
|
end else if (m_axis_rq_tready) begin
|
|
// input is not ready, but output is ready
|
|
m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg;
|
|
temp_m_axis_rq_tvalid_next = 1'b0;
|
|
store_axis_rq_temp_to_output = 1'b1;
|
|
end
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
if (rst) begin
|
|
m_axis_rq_tvalid_reg <= 1'b0;
|
|
m_axis_rq_tready_int_reg <= 1'b0;
|
|
temp_m_axis_rq_tvalid_reg <= 1'b0;
|
|
end else begin
|
|
m_axis_rq_tvalid_reg <= m_axis_rq_tvalid_next;
|
|
m_axis_rq_tready_int_reg <= m_axis_rq_tready_int_early;
|
|
temp_m_axis_rq_tvalid_reg <= temp_m_axis_rq_tvalid_next;
|
|
end
|
|
|
|
// datapath
|
|
if (store_axis_rq_int_to_output) begin
|
|
m_axis_rq_tdata_reg <= m_axis_rq_tdata_int;
|
|
m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int;
|
|
m_axis_rq_tlast_reg <= m_axis_rq_tlast_int;
|
|
m_axis_rq_tuser_reg <= m_axis_rq_tuser_int;
|
|
end else if (store_axis_rq_temp_to_output) begin
|
|
m_axis_rq_tdata_reg <= temp_m_axis_rq_tdata_reg;
|
|
m_axis_rq_tkeep_reg <= temp_m_axis_rq_tkeep_reg;
|
|
m_axis_rq_tlast_reg <= temp_m_axis_rq_tlast_reg;
|
|
m_axis_rq_tuser_reg <= temp_m_axis_rq_tuser_reg;
|
|
end
|
|
|
|
if (store_axis_rq_int_to_temp) begin
|
|
temp_m_axis_rq_tdata_reg <= m_axis_rq_tdata_int;
|
|
temp_m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int;
|
|
temp_m_axis_rq_tlast_reg <= m_axis_rq_tlast_int;
|
|
temp_m_axis_rq_tuser_reg <= m_axis_rq_tuser_int;
|
|
end
|
|
end
|
|
|
|
// output datapath logic (AXI write data)
|
|
reg [AXI_DATA_WIDTH-1:0] m_axi_wdata_reg = {AXI_DATA_WIDTH{1'b0}};
|
|
reg [AXI_STRB_WIDTH-1:0] m_axi_wstrb_reg = {AXI_STRB_WIDTH{1'b0}};
|
|
reg m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
|
|
reg m_axi_wlast_reg = 1'b0;
|
|
|
|
reg [AXI_DATA_WIDTH-1:0] temp_m_axi_wdata_reg = {AXI_DATA_WIDTH{1'b0}};
|
|
reg [AXI_STRB_WIDTH-1:0] temp_m_axi_wstrb_reg = {AXI_STRB_WIDTH{1'b0}};
|
|
reg temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next;
|
|
reg temp_m_axi_wlast_reg = 1'b0;
|
|
|
|
// datapath control
|
|
reg store_axi_w_int_to_output;
|
|
reg store_axi_w_int_to_temp;
|
|
reg store_axi_w_temp_to_output;
|
|
|
|
assign m_axi_wdata = m_axi_wdata_reg;
|
|
assign m_axi_wstrb = m_axi_wstrb_reg;
|
|
assign m_axi_wvalid = m_axi_wvalid_reg;
|
|
assign m_axi_wlast = m_axi_wlast_reg;
|
|
|
|
// enable ready input next cycle if output is ready or if both output registers are empty
|
|
assign m_axi_wready_int_early = m_axi_wready || (!temp_m_axi_wvalid_reg && !m_axi_wvalid_reg);
|
|
|
|
always @* begin
|
|
// transfer sink ready state to source
|
|
m_axi_wvalid_next = m_axi_wvalid_reg;
|
|
temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg;
|
|
|
|
store_axi_w_int_to_output = 1'b0;
|
|
store_axi_w_int_to_temp = 1'b0;
|
|
store_axi_w_temp_to_output = 1'b0;
|
|
|
|
if (m_axi_wready_int_reg) begin
|
|
// input is ready
|
|
if (m_axi_wready || !m_axi_wvalid_reg) begin
|
|
// output is ready or currently not valid, transfer data to output
|
|
m_axi_wvalid_next = m_axi_wvalid_int;
|
|
store_axi_w_int_to_output = 1'b1;
|
|
end else begin
|
|
// output is not ready, store input in temp
|
|
temp_m_axi_wvalid_next = m_axi_wvalid_int;
|
|
store_axi_w_int_to_temp = 1'b1;
|
|
end
|
|
end else if (m_axi_wready) begin
|
|
// input is not ready, but output is ready
|
|
m_axi_wvalid_next = temp_m_axi_wvalid_reg;
|
|
temp_m_axi_wvalid_next = 1'b0;
|
|
store_axi_w_temp_to_output = 1'b1;
|
|
end
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
m_axi_wvalid_reg <= m_axi_wvalid_next;
|
|
m_axi_wready_int_reg <= m_axi_wready_int_early;
|
|
temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next;
|
|
|
|
// datapath
|
|
if (store_axi_w_int_to_output) begin
|
|
m_axi_wdata_reg <= m_axi_wdata_int;
|
|
m_axi_wstrb_reg <= m_axi_wstrb_int;
|
|
m_axi_wlast_reg <= m_axi_wlast_int;
|
|
end else if (store_axi_w_temp_to_output) begin
|
|
m_axi_wdata_reg <= temp_m_axi_wdata_reg;
|
|
m_axi_wstrb_reg <= temp_m_axi_wstrb_reg;
|
|
m_axi_wlast_reg <= temp_m_axi_wlast_reg;
|
|
end
|
|
|
|
if (store_axi_w_int_to_temp) begin
|
|
temp_m_axi_wdata_reg <= m_axi_wdata_int;
|
|
temp_m_axi_wstrb_reg <= m_axi_wstrb_int;
|
|
temp_m_axi_wlast_reg <= m_axi_wlast_int;
|
|
end
|
|
|
|
if (rst) begin
|
|
m_axi_wvalid_reg <= 1'b0;
|
|
m_axi_wready_int_reg <= 1'b0;
|
|
temp_m_axi_wvalid_reg <= 1'b0;
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
`resetall
|