1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_switch.v
Alex Forencich 268d0c66b8 Rewrite resets
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2022-05-13 12:57:41 -07:00

411 lines
16 KiB
Verilog

/*
Copyright (c) 2016-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream switch
*/
module axis_switch #
(
// Number of AXI stream inputs
parameter S_COUNT = 4,
// Number of AXI stream outputs
parameter M_COUNT = 4,
// Width of AXI stream interfaces in bits
parameter DATA_WIDTH = 8,
// Propagate tkeep signal
parameter KEEP_ENABLE = (DATA_WIDTH>8),
// tkeep signal width (words per cycle)
parameter KEEP_WIDTH = ((DATA_WIDTH+7)/8),
// Propagate tid signal
parameter ID_ENABLE = 0,
// input tid signal width
parameter S_ID_WIDTH = 8,
// output tid signal width
parameter M_ID_WIDTH = S_ID_WIDTH+$clog2(S_COUNT),
// output tdest signal width
parameter M_DEST_WIDTH = 1,
// input tdest signal width
// must be wide enough to uniquely address outputs
parameter S_DEST_WIDTH = M_DEST_WIDTH+$clog2(M_COUNT),
// Propagate tuser signal
parameter USER_ENABLE = 1,
// tuser signal width
parameter USER_WIDTH = 1,
// Output interface routing base tdest selection
// Concatenate M_COUNT S_DEST_WIDTH sized constants
// Port selected if M_BASE <= tdest <= M_TOP
// set to zero for default routing with tdest MSBs as port index
parameter M_BASE = 0,
// Output interface routing top tdest selection
// Concatenate M_COUNT S_DEST_WIDTH sized constants
// Port selected if M_BASE <= tdest <= M_TOP
// set to zero to inherit from M_BASE
parameter M_TOP = 0,
// Interface connection control
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Update tid with routing information
parameter UPDATE_TID = 0,
// Input interface register type
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_REG_TYPE = 0,
// Output interface register type
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_REG_TYPE = 2,
// select round robin arbitration
parameter ARB_TYPE_ROUND_ROBIN = 1,
// LSB priority selection
parameter ARB_LSB_HIGH_PRIORITY = 1
)
(
input wire clk,
input wire rst,
/*
* AXI Stream inputs
*/
input wire [S_COUNT*DATA_WIDTH-1:0] s_axis_tdata,
input wire [S_COUNT*KEEP_WIDTH-1:0] s_axis_tkeep,
input wire [S_COUNT-1:0] s_axis_tvalid,
output wire [S_COUNT-1:0] s_axis_tready,
input wire [S_COUNT-1:0] s_axis_tlast,
input wire [S_COUNT*S_ID_WIDTH-1:0] s_axis_tid,
input wire [S_COUNT*S_DEST_WIDTH-1:0] s_axis_tdest,
input wire [S_COUNT*USER_WIDTH-1:0] s_axis_tuser,
/*
* AXI Stream outputs
*/
output wire [M_COUNT*DATA_WIDTH-1:0] m_axis_tdata,
output wire [M_COUNT*KEEP_WIDTH-1:0] m_axis_tkeep,
output wire [M_COUNT-1:0] m_axis_tvalid,
input wire [M_COUNT-1:0] m_axis_tready,
output wire [M_COUNT-1:0] m_axis_tlast,
output wire [M_COUNT*M_ID_WIDTH-1:0] m_axis_tid,
output wire [M_COUNT*M_DEST_WIDTH-1:0] m_axis_tdest,
output wire [M_COUNT*USER_WIDTH-1:0] m_axis_tuser
);
parameter CL_S_COUNT = $clog2(S_COUNT);
parameter CL_M_COUNT = $clog2(M_COUNT);
parameter S_ID_WIDTH_INT = S_ID_WIDTH > 0 ? S_ID_WIDTH : 1;
parameter M_DEST_WIDTH_INT = M_DEST_WIDTH > 0 ? M_DEST_WIDTH : 1;
integer i, j;
// check configuration
initial begin
if (S_DEST_WIDTH < CL_M_COUNT) begin
$error("Error: S_DEST_WIDTH too small for port count (instance %m)");
$finish;
end
if (UPDATE_TID) begin
if (!ID_ENABLE) begin
$error("Error: UPDATE_TID set requires ID_ENABLE set (instance %m)");
$finish;
end
if (M_ID_WIDTH < CL_S_COUNT) begin
$error("Error: M_ID_WIDTH too small for port count (instance %m)");
$finish;
end
end
if (M_BASE == 0) begin
// M_BASE is zero, route with tdest as port index
$display("Addressing configuration for axis_switch instance %m");
for (i = 0; i < M_COUNT; i = i + 1) begin
$display("%d: %08x-%08x (connect mask %b)", i, i << (S_DEST_WIDTH-CL_M_COUNT), ((i+1) << (S_DEST_WIDTH-CL_M_COUNT))-1, M_CONNECT[i*S_COUNT +: S_COUNT]);
end
end else if (M_TOP == 0) begin
// M_TOP is zero, assume equal to M_BASE
$display("Addressing configuration for axis_switch instance %m");
for (i = 0; i < M_COUNT; i = i + 1) begin
$display("%d: %08x (connect mask %b)", i, M_BASE[i*S_DEST_WIDTH +: S_DEST_WIDTH], M_CONNECT[i*S_COUNT +: S_COUNT]);
end
for (i = 0; i < M_COUNT; i = i + 1) begin
for (j = i+1; j < M_COUNT; j = j + 1) begin
if (M_BASE[i*S_DEST_WIDTH +: S_DEST_WIDTH] == M_BASE[j*S_DEST_WIDTH +: S_DEST_WIDTH]) begin
$display("%d: %08x", i, M_BASE[i*S_DEST_WIDTH +: S_DEST_WIDTH]);
$display("%d: %08x", j, M_BASE[j*S_DEST_WIDTH +: S_DEST_WIDTH]);
$error("Error: ranges overlap (instance %m)");
$finish;
end
end
end
end else begin
$display("Addressing configuration for axis_switch instance %m");
for (i = 0; i < M_COUNT; i = i + 1) begin
$display("%d: %08x-%08x (connect mask %b)", i, M_BASE[i*S_DEST_WIDTH +: S_DEST_WIDTH], M_TOP[i*S_DEST_WIDTH +: S_DEST_WIDTH], M_CONNECT[i*S_COUNT +: S_COUNT]);
end
for (i = 0; i < M_COUNT; i = i + 1) begin
if (M_BASE[i*S_DEST_WIDTH +: S_DEST_WIDTH] > M_TOP[i*S_DEST_WIDTH +: S_DEST_WIDTH]) begin
$error("Error: invalid range (instance %m)");
$finish;
end
end
for (i = 0; i < M_COUNT; i = i + 1) begin
for (j = i+1; j < M_COUNT; j = j + 1) begin
if (M_BASE[i*S_DEST_WIDTH +: S_DEST_WIDTH] <= M_TOP[j*S_DEST_WIDTH +: S_DEST_WIDTH] && M_BASE[j*S_DEST_WIDTH +: S_DEST_WIDTH] <= M_TOP[i*S_DEST_WIDTH +: S_DEST_WIDTH]) begin
$display("%d: %08x-%08x", i, M_BASE[i*S_DEST_WIDTH +: S_DEST_WIDTH], M_TOP[i*S_DEST_WIDTH +: S_DEST_WIDTH]);
$display("%d: %08x-%08x", j, M_BASE[j*S_DEST_WIDTH +: S_DEST_WIDTH], M_TOP[j*S_DEST_WIDTH +: S_DEST_WIDTH]);
$error("Error: ranges overlap (instance %m)");
$finish;
end
end
end
end
end
wire [S_COUNT*DATA_WIDTH-1:0] int_s_axis_tdata;
wire [S_COUNT*KEEP_WIDTH-1:0] int_s_axis_tkeep;
wire [S_COUNT-1:0] int_s_axis_tvalid;
wire [S_COUNT-1:0] int_s_axis_tready;
wire [S_COUNT-1:0] int_s_axis_tlast;
wire [S_COUNT*S_ID_WIDTH-1:0] int_s_axis_tid;
wire [S_COUNT*S_DEST_WIDTH-1:0] int_s_axis_tdest;
wire [S_COUNT*USER_WIDTH-1:0] int_s_axis_tuser;
wire [S_COUNT*M_COUNT-1:0] int_axis_tvalid;
wire [M_COUNT*S_COUNT-1:0] int_axis_tready;
generate
genvar m, n;
for (m = 0; m < S_COUNT; m = m + 1) begin : s_ifaces
// decoding
reg [CL_M_COUNT-1:0] select_reg = 0, select_next;
reg drop_reg = 1'b0, drop_next;
reg select_valid_reg = 1'b0, select_valid_next;
integer k;
always @* begin
select_next = select_reg;
drop_next = drop_reg && !(int_s_axis_tvalid[m] && int_s_axis_tready[m] && int_s_axis_tlast[m]);
select_valid_next = select_valid_reg && !(int_s_axis_tvalid[m] && int_s_axis_tready[m] && int_s_axis_tlast[m]);
if (int_s_axis_tvalid[m] && !select_valid_reg && !drop_reg) begin
select_next = 0;
select_valid_next = 1'b0;
drop_next = 1'b1;
for (k = 0; k < M_COUNT; k = k + 1) begin
if (M_BASE == 0) begin
if (M_COUNT == 1) begin
// M_BASE is zero with only one output port, ignore tdest
select_next = 0;
select_valid_next = 1'b1;
drop_next = 1'b0;
end else begin
// M_BASE is zero, route with $clog2(M_COUNT) MSBs of tdest as port index
if (int_s_axis_tdest[m*S_DEST_WIDTH+(S_DEST_WIDTH-CL_M_COUNT) +: CL_M_COUNT] == k && (M_CONNECT & (1 << (m+k*S_COUNT)))) begin
select_next = k;
select_valid_next = 1'b1;
drop_next = 1'b0;
end
end
end else if (M_TOP == 0) begin
// M_TOP is zero, assume equal to M_BASE
if (int_s_axis_tdest[m*S_DEST_WIDTH +: S_DEST_WIDTH] == M_BASE[k*S_DEST_WIDTH +: S_DEST_WIDTH] && (M_CONNECT & (1 << (m+k*S_COUNT)))) begin
select_next = k;
select_valid_next = 1'b1;
drop_next = 1'b0;
end
end else begin
if (int_s_axis_tdest[m*S_DEST_WIDTH +: S_DEST_WIDTH] >= M_BASE[k*S_DEST_WIDTH +: S_DEST_WIDTH] && int_s_axis_tdest[m*S_DEST_WIDTH +: S_DEST_WIDTH] <= M_TOP[k*S_DEST_WIDTH +: S_DEST_WIDTH] && (M_CONNECT & (1 << (m+k*S_COUNT)))) begin
select_next = k;
select_valid_next = 1'b1;
drop_next = 1'b0;
end
end
end
end
end
always @(posedge clk) begin
select_reg <= select_next;
drop_reg <= drop_next;
select_valid_reg <= select_valid_next;
if (rst) begin
select_valid_reg <= 1'b0;
end
end
// forwarding
assign int_axis_tvalid[m*M_COUNT +: M_COUNT] = (int_s_axis_tvalid[m] && select_valid_reg && !drop_reg) << select_reg;
assign int_s_axis_tready[m] = int_axis_tready[select_reg*S_COUNT+m] || drop_reg;
// S side register
axis_register #(
.DATA_WIDTH(DATA_WIDTH),
.KEEP_ENABLE(KEEP_ENABLE),
.KEEP_WIDTH(KEEP_WIDTH),
.LAST_ENABLE(1),
.ID_ENABLE(ID_ENABLE && S_ID_WIDTH > 0),
.ID_WIDTH(S_ID_WIDTH_INT),
.DEST_ENABLE(1),
.DEST_WIDTH(S_DEST_WIDTH),
.USER_ENABLE(USER_ENABLE),
.USER_WIDTH(USER_WIDTH),
.REG_TYPE(S_REG_TYPE)
)
reg_inst (
.clk(clk),
.rst(rst),
// AXI input
.s_axis_tdata(s_axis_tdata[m*DATA_WIDTH +: DATA_WIDTH]),
.s_axis_tkeep(s_axis_tkeep[m*KEEP_WIDTH +: KEEP_WIDTH]),
.s_axis_tvalid(s_axis_tvalid[m]),
.s_axis_tready(s_axis_tready[m]),
.s_axis_tlast(s_axis_tlast[m]),
.s_axis_tid(s_axis_tid[m*S_ID_WIDTH +: S_ID_WIDTH_INT]),
.s_axis_tdest(s_axis_tdest[m*S_DEST_WIDTH +: S_DEST_WIDTH]),
.s_axis_tuser(s_axis_tuser[m*USER_WIDTH +: USER_WIDTH]),
// AXI output
.m_axis_tdata(int_s_axis_tdata[m*DATA_WIDTH +: DATA_WIDTH]),
.m_axis_tkeep(int_s_axis_tkeep[m*KEEP_WIDTH +: KEEP_WIDTH]),
.m_axis_tvalid(int_s_axis_tvalid[m]),
.m_axis_tready(int_s_axis_tready[m]),
.m_axis_tlast(int_s_axis_tlast[m]),
.m_axis_tid(int_s_axis_tid[m*S_ID_WIDTH +: S_ID_WIDTH_INT]),
.m_axis_tdest(int_s_axis_tdest[m*S_DEST_WIDTH +: S_DEST_WIDTH]),
.m_axis_tuser(int_s_axis_tuser[m*USER_WIDTH +: USER_WIDTH])
);
end // s_ifaces
for (n = 0; n < M_COUNT; n = n + 1) begin : m_ifaces
// arbitration
wire [S_COUNT-1:0] request;
wire [S_COUNT-1:0] acknowledge;
wire [S_COUNT-1:0] grant;
wire grant_valid;
wire [CL_S_COUNT-1:0] grant_encoded;
arbiter #(
.PORTS(S_COUNT),
.ARB_TYPE_ROUND_ROBIN(ARB_TYPE_ROUND_ROBIN),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.ARB_LSB_HIGH_PRIORITY(ARB_LSB_HIGH_PRIORITY)
)
arb_inst (
.clk(clk),
.rst(rst),
.request(request),
.acknowledge(acknowledge),
.grant(grant),
.grant_valid(grant_valid),
.grant_encoded(grant_encoded)
);
// mux
reg [DATA_WIDTH-1:0] m_axis_tdata_mux;
reg [KEEP_WIDTH-1:0] m_axis_tkeep_mux;
reg m_axis_tvalid_mux;
wire m_axis_tready_mux;
reg m_axis_tlast_mux;
reg [M_ID_WIDTH-1:0] m_axis_tid_mux;
reg [M_DEST_WIDTH-1:0] m_axis_tdest_mux;
reg [USER_WIDTH-1:0] m_axis_tuser_mux;
always @* begin
m_axis_tdata_mux = int_s_axis_tdata[grant_encoded*DATA_WIDTH +: DATA_WIDTH];
m_axis_tkeep_mux = int_s_axis_tkeep[grant_encoded*KEEP_WIDTH +: KEEP_WIDTH];
m_axis_tvalid_mux = int_axis_tvalid[grant_encoded*M_COUNT+n] && grant_valid;
m_axis_tlast_mux = int_s_axis_tlast[grant_encoded];
m_axis_tid_mux = int_s_axis_tid[grant_encoded*S_ID_WIDTH +: S_ID_WIDTH_INT];
if (UPDATE_TID && S_COUNT > 1) begin
m_axis_tid_mux[M_ID_WIDTH-1:M_ID_WIDTH-CL_S_COUNT] = grant_encoded;
end
m_axis_tdest_mux = int_s_axis_tdest[grant_encoded*S_DEST_WIDTH +: S_DEST_WIDTH];
m_axis_tuser_mux = int_s_axis_tuser[grant_encoded*USER_WIDTH +: USER_WIDTH];
end
assign int_axis_tready[n*S_COUNT +: S_COUNT] = (grant_valid && m_axis_tready_mux) << grant_encoded;
for (m = 0; m < S_COUNT; m = m + 1) begin
assign request[m] = int_axis_tvalid[m*M_COUNT+n] && !grant[m];
assign acknowledge[m] = grant[m] && int_axis_tvalid[m*M_COUNT+n] && m_axis_tlast_mux && m_axis_tready_mux;
end
// M side register
axis_register #(
.DATA_WIDTH(DATA_WIDTH),
.KEEP_ENABLE(KEEP_ENABLE),
.KEEP_WIDTH(KEEP_WIDTH),
.LAST_ENABLE(1),
.ID_ENABLE(ID_ENABLE),
.ID_WIDTH(M_ID_WIDTH),
.DEST_ENABLE(M_DEST_WIDTH > 0),
.DEST_WIDTH(M_DEST_WIDTH_INT),
.USER_ENABLE(USER_ENABLE),
.USER_WIDTH(USER_WIDTH),
.REG_TYPE(M_REG_TYPE)
)
reg_inst (
.clk(clk),
.rst(rst),
// AXI input
.s_axis_tdata(m_axis_tdata_mux),
.s_axis_tkeep(m_axis_tkeep_mux),
.s_axis_tvalid(m_axis_tvalid_mux),
.s_axis_tready(m_axis_tready_mux),
.s_axis_tlast(m_axis_tlast_mux),
.s_axis_tid(m_axis_tid_mux),
.s_axis_tdest(m_axis_tdest_mux),
.s_axis_tuser(m_axis_tuser_mux),
// AXI output
.m_axis_tdata(m_axis_tdata[n*DATA_WIDTH +: DATA_WIDTH]),
.m_axis_tkeep(m_axis_tkeep[n*KEEP_WIDTH +: KEEP_WIDTH]),
.m_axis_tvalid(m_axis_tvalid[n]),
.m_axis_tready(m_axis_tready[n]),
.m_axis_tlast(m_axis_tlast[n]),
.m_axis_tid(m_axis_tid[n*M_ID_WIDTH +: M_ID_WIDTH]),
.m_axis_tdest(m_axis_tdest[n*M_DEST_WIDTH +: M_DEST_WIDTH_INT]),
.m_axis_tuser(m_axis_tuser[n*USER_WIDTH +: USER_WIDTH])
);
end // m_ifaces
endgenerate
endmodule
`resetall