1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/tb/test_axis_stat_counter.py
2019-03-07 22:51:40 -08:00

791 lines
20 KiB
Python
Executable File

#!/usr/bin/env python
"""
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from myhdl import *
import os
import struct
import axis_ep
module = 'axis_stat_counter'
testbench = 'test_%s' % module
srcs = []
srcs.append("../rtl/%s.v" % module)
srcs.append("%s.v" % testbench)
src = ' '.join(srcs)
build_cmd = "iverilog -o %s.vvp %s" % (testbench, src)
def bench():
# Parameters
DATA_WIDTH = 64
KEEP_WIDTH = (DATA_WIDTH/8)
TAG_ENABLE = 1
TAG_WIDTH = 16
TICK_COUNT_ENABLE = 1
TICK_COUNT_WIDTH = 32
BYTE_COUNT_ENABLE = 1
BYTE_COUNT_WIDTH = 32
FRAME_COUNT_ENABLE = 1
FRAME_COUNT_WIDTH = 32
# Inputs
clk = Signal(bool(0))
rst = Signal(bool(0))
current_test = Signal(intbv(0)[8:])
monitor_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
monitor_axis_tkeep = Signal(intbv(0)[KEEP_WIDTH:])
monitor_axis_tvalid = Signal(bool(0))
monitor_axis_tready = Signal(bool(0))
monitor_axis_tlast = Signal(bool(0))
monitor_axis_tuser = Signal(bool(0))
m_axis_tready = Signal(bool(0))
tag = Signal(intbv(16)[TAG_WIDTH:])
trigger = Signal(bool(0))
# Outputs
m_axis_tdata = Signal(intbv(0)[8:])
m_axis_tvalid = Signal(bool(0))
m_axis_tlast = Signal(bool(0))
m_axis_tuser = Signal(bool(0))
busy = Signal(bool(0))
# sources and sinks
source_pause = Signal(bool(0))
monitor_sink_pause = Signal(bool(0))
sink_pause = Signal(bool(0))
source = axis_ep.AXIStreamSource()
source_logic = source.create_logic(
clk,
rst,
tdata=monitor_axis_tdata,
tkeep=monitor_axis_tkeep,
tvalid=monitor_axis_tvalid,
tready=monitor_axis_tready,
tlast=monitor_axis_tlast,
tuser=monitor_axis_tuser,
pause=source_pause,
name='source'
)
monitor_sink = axis_ep.AXIStreamSink()
monitor_sink_logic = monitor_sink.create_logic(
clk,
rst,
tdata=monitor_axis_tdata,
tkeep=monitor_axis_tkeep,
tvalid=monitor_axis_tvalid,
tready=monitor_axis_tready,
tlast=monitor_axis_tlast,
tuser=monitor_axis_tuser,
pause=monitor_sink_pause,
name='monitor_sink'
)
sink = axis_ep.AXIStreamSink()
sink_logic = sink.create_logic(
clk,
rst,
tdata=m_axis_tdata,
tvalid=m_axis_tvalid,
tready=m_axis_tready,
tlast=m_axis_tlast,
tuser=m_axis_tuser,
pause=sink_pause,
name='sink'
)
# DUT
if os.system(build_cmd):
raise Exception("Error running build command")
dut = Cosimulation(
"vvp -m myhdl %s.vvp -lxt2" % testbench,
clk=clk,
rst=rst,
current_test=current_test,
monitor_axis_tdata=monitor_axis_tdata,
monitor_axis_tkeep=monitor_axis_tkeep,
monitor_axis_tvalid=monitor_axis_tvalid,
monitor_axis_tready=monitor_axis_tready,
monitor_axis_tlast=monitor_axis_tlast,
monitor_axis_tuser=monitor_axis_tuser,
m_axis_tdata=m_axis_tdata,
m_axis_tvalid=m_axis_tvalid,
m_axis_tready=m_axis_tready,
m_axis_tlast=m_axis_tlast,
m_axis_tuser=m_axis_tuser,
tag=tag,
trigger=trigger,
busy=busy
)
@always(delay(4))
def clkgen():
clk.next = not clk
@instance
def check():
yield delay(100)
yield clk.posedge
rst.next = 1
yield clk.posedge
rst.next = 0
yield clk.posedge
yield delay(100)
yield clk.posedge
yield clk.posedge
tag.next = 1
yield clk.posedge
print("test 1: test tick timer")
current_test.next = 1
yield clk.posedge
start_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
for i in range(100-1):
yield clk.posedge
stop_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
yield clk.posedge
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
yield clk.posedge
# discard first trigger output
rx_frame = sink.recv()
# check second trigger output
rx_frame = sink.recv()
rx_frame_values = struct.unpack(">HLLL", bytes(rx_frame.data))
cycles = (stop_time - start_time) / 8
print(rx_frame_values)
assert rx_frame_values[0] == 1
assert rx_frame_values[1] == cycles*8
assert rx_frame_values[1] == 100*8
yield delay(100)
yield clk.posedge
print("test 2: pause sink")
current_test.next = 2
yield clk.posedge
start_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
for i in range(100-1):
yield clk.posedge
stop_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
while trigger or m_axis_tvalid:
sink_pause.next = True
yield clk.posedge
yield clk.posedge
yield clk.posedge
sink_pause.next = False
yield clk.posedge
yield clk.posedge
yield clk.posedge
# discard first trigger output
rx_frame = sink.recv()
# check second trigger output
rx_frame = sink.recv()
rx_frame_values = struct.unpack(">HLLL", bytes(rx_frame.data))
cycles = (stop_time - start_time) / 8
print(rx_frame_values)
assert rx_frame_values[0] == 1
assert rx_frame_values[1] == cycles*8
assert rx_frame_values[1] == 100*8
yield delay(100)
yield clk.posedge
print("test 3: test packet")
current_test.next = 3
yield clk.posedge
start_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
test_frame = axis_ep.AXIStreamFrame(
b'\xDA\xD1\xD2\xD3\xD4\xD5' +
b'\x5A\x51\x52\x53\x54\x55' +
b'\x80\x00' +
b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10'
)
source.send(test_frame)
yield clk.posedge
while monitor_axis_tvalid:
yield clk.posedge
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
stop_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
yield clk.posedge
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
yield clk.posedge
# discard first trigger output
rx_frame = sink.recv()
# check second trigger output
rx_frame = sink.recv()
rx_frame_values = struct.unpack(">HLLL", bytes(rx_frame.data))
cycles = (stop_time - start_time) / 8
print(rx_frame_values)
assert rx_frame_values[0] == 1
assert rx_frame_values[1] == cycles*8
assert rx_frame_values[2] == len(test_frame.data)
assert rx_frame_values[3] == 1
yield delay(100)
yield clk.posedge
print("test 4: longer packet")
current_test.next = 4
yield clk.posedge
start_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
test_frame = axis_ep.AXIStreamFrame(
b'\xDA\xD1\xD2\xD3\xD4\xD5' +
b'\x5A\x51\x52\x53\x54\x55' +
b'\x80\x00' +
bytearray(range(256))
)
source.send(test_frame)
yield clk.posedge
while monitor_axis_tvalid:
yield clk.posedge
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
stop_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
yield clk.posedge
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
yield clk.posedge
# discard first trigger output
rx_frame = sink.recv()
# check second trigger output
rx_frame = sink.recv()
rx_frame_values = struct.unpack(">HLLL", bytes(rx_frame.data))
cycles = (stop_time - start_time) / 8
print(rx_frame_values)
assert rx_frame_values[0] == 1
assert rx_frame_values[1] == cycles*8
assert rx_frame_values[2] == len(test_frame.data)
assert rx_frame_values[3] == 1
yield delay(100)
yield clk.posedge
print("test 5: test packet with pauses")
current_test.next = 5
yield clk.posedge
start_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
test_frame = axis_ep.AXIStreamFrame(
b'\xDA\xD1\xD2\xD3\xD4\xD5' +
b'\x5A\x51\x52\x53\x54\x55' +
b'\x80\x00' +
bytearray(range(256))
)
source.send(test_frame)
yield clk.posedge
yield delay(64)
yield clk.posedge
source_pause.next = True
yield delay(32)
yield clk.posedge
source_pause.next = False
yield delay(64)
yield clk.posedge
monitor_sink_pause.next = True
yield delay(32)
yield clk.posedge
monitor_sink_pause.next = False
while monitor_axis_tvalid:
yield clk.posedge
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
stop_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
yield clk.posedge
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
yield clk.posedge
# discard first trigger output
rx_frame = sink.recv()
# check second trigger output
rx_frame = sink.recv()
rx_frame_values = struct.unpack(">HLLL", bytes(rx_frame.data))
cycles = (stop_time - start_time) / 8
print(rx_frame_values)
assert rx_frame_values[0] == 1
assert rx_frame_values[1] == cycles*8
assert rx_frame_values[2] == len(test_frame.data)
assert rx_frame_values[3] == 1
yield delay(100)
yield clk.posedge
print("test 6: back-to-back packets")
current_test.next = 6
yield clk.posedge
start_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
test_frame1 = axis_ep.AXIStreamFrame(
b'\xDA\xD1\xD2\xD3\xD4\xD5' +
b'\x5A\x51\x52\x53\x54\x55' +
b'\x80\x00' +
b'\x01\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10'
)
test_frame2 = axis_ep.AXIStreamFrame(
b'\xDA\xD1\xD2\xD3\xD4\xD5' +
b'\x5A\x51\x52\x53\x54\x55' +
b'\x80\x00' +
b'\x02\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10'
)
source.send(test_frame1)
source.send(test_frame2)
yield clk.posedge
while monitor_axis_tvalid:
yield clk.posedge
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
stop_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
yield clk.posedge
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
yield clk.posedge
# discard first trigger output
rx_frame = sink.recv()
# check second trigger output
rx_frame = sink.recv()
rx_frame_values = struct.unpack(">HLLL", bytes(rx_frame.data))
cycles = (stop_time - start_time) / 8
print(rx_frame_values)
assert rx_frame_values[0] == 1
assert rx_frame_values[1] == cycles*8
assert rx_frame_values[2] == len(test_frame1.data) + len(test_frame2.data)
assert rx_frame_values[3] == 2
yield delay(100)
yield clk.posedge
print("test 7: alternate pause source")
current_test.next = 7
yield clk.posedge
start_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
test_frame1 = axis_ep.AXIStreamFrame(
b'\xDA\xD1\xD2\xD3\xD4\xD5' +
b'\x5A\x51\x52\x53\x54\x55' +
b'\x80\x00' +
b'\x01\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10'
)
test_frame2 = axis_ep.AXIStreamFrame(
b'\xDA\xD1\xD2\xD3\xD4\xD5' +
b'\x5A\x51\x52\x53\x54\x55' +
b'\x80\x00' +
b'\x02\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10'
)
source.send(test_frame1)
source.send(test_frame2)
yield clk.posedge
while monitor_axis_tvalid:
yield clk.posedge
yield clk.posedge
source_pause.next = False
yield clk.posedge
source_pause.next = True
yield clk.posedge
source_pause.next = False
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
stop_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
yield clk.posedge
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
yield clk.posedge
# discard first trigger output
rx_frame = sink.recv()
# check second trigger output
rx_frame = sink.recv()
rx_frame_values = struct.unpack(">HLLL", bytes(rx_frame.data))
cycles = (stop_time - start_time) / 8
print(rx_frame_values)
assert rx_frame_values[0] == 1
assert rx_frame_values[1] == cycles*8
assert rx_frame_values[2] == len(test_frame1.data) + len(test_frame2.data)
assert rx_frame_values[3] == 2
yield delay(100)
yield clk.posedge
print("test 8: alternate pause sink")
current_test.next = 8
yield clk.posedge
start_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
test_frame1 = axis_ep.AXIStreamFrame(
b'\xDA\xD1\xD2\xD3\xD4\xD5' +
b'\x5A\x51\x52\x53\x54\x55' +
b'\x80\x00' +
b'\x01\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10'
)
test_frame2 = axis_ep.AXIStreamFrame(
b'\xDA\xD1\xD2\xD3\xD4\xD5' +
b'\x5A\x51\x52\x53\x54\x55' +
b'\x80\x00' +
b'\x02\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10'
)
source.send(test_frame1)
source.send(test_frame2)
yield clk.posedge
while monitor_axis_tvalid:
monitor_sink_pause.next = True
yield clk.posedge
yield clk.posedge
yield clk.posedge
monitor_sink_pause.next = False
yield clk.posedge
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
stop_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
yield clk.posedge
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
yield clk.posedge
# discard first trigger output
rx_frame = sink.recv()
# check second trigger output
rx_frame = sink.recv()
rx_frame_values = struct.unpack(">HLLL", bytes(rx_frame.data))
cycles = (stop_time - start_time) / 8
print(rx_frame_values)
assert rx_frame_values[0] == 1
assert rx_frame_values[1] == cycles*8
assert rx_frame_values[2] == len(test_frame1.data) + len(test_frame2.data)
assert rx_frame_values[3] == 2
yield delay(100)
yield clk.posedge
print("test 9: various length packets")
current_test.next = 9
yield clk.posedge
start_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
lens = [32, 48, 96, 128, 256]
test_frame = []
for i in range(len(lens)):
test_frame.append(axis_ep.AXIStreamFrame(
b'\xDA\xD1\xD2\xD3\xD4\xD5' +
b'\x5A\x51\x52\x53\x54\x55' +
b'\x80\x00' +
bytearray(range(lens[i])))
)
for f in test_frame:
source.send(f)
yield clk.posedge
while monitor_axis_tvalid:
yield clk.posedge
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
stop_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
yield clk.posedge
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
yield clk.posedge
# discard first trigger output
rx_frame = sink.recv()
# check second trigger output
rx_frame = sink.recv()
rx_frame_values = struct.unpack(">HLLL", bytes(rx_frame.data))
cycles = (stop_time - start_time) / 8
print(rx_frame_values)
assert rx_frame_values[0] == 1
assert rx_frame_values[1] == cycles*8
assert rx_frame_values[2] == sum(len(f.data) for f in test_frame)
assert rx_frame_values[3] == len(test_frame)
yield delay(100)
yield clk.posedge
print("test 10: various length packets with intermediate trigger")
current_test.next = 10
yield clk.posedge
start_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
lens = [32, 48, 96, 128, 256]
test_frame = []
for i in range(len(lens)):
test_frame.append(axis_ep.AXIStreamFrame(
b'\xDA\xD1\xD2\xD3\xD4\xD5' +
b'\x5A\x51\x52\x53\x54\x55' +
b'\x80\x00' +
bytearray(range(lens[i])))
)
for f in test_frame:
source.send(f)
yield clk.posedge
yield delay(200)
yield clk.posedge
trigger_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
yield clk.posedge
while monitor_axis_tvalid:
yield clk.posedge
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
stop_time = now()
trigger.next = 1
yield clk.posedge
trigger.next = 0
yield clk.posedge
while m_axis_tvalid:
yield clk.posedge
yield clk.posedge
yield clk.posedge
# discard first trigger output
rx_frame = sink.recv()
# check second trigger output
rx_frame = sink.recv()
# check second trigger output
rx_frame2 = sink.recv()
rx_frame_values = struct.unpack(">HLLL", bytes(rx_frame.data))
cycles = (stop_time - start_time) / 8
cycles1 = (trigger_time - start_time) / 8
print(rx_frame_values)
rx_frame2_values = struct.unpack(">HLLL", bytes(rx_frame2.data))
cycles2 = (stop_time - trigger_time) / 8
print(rx_frame2_values)
assert rx_frame_values[0] == 1
assert rx_frame2_values[0] == 1
assert rx_frame_values[1] == cycles1*8
assert rx_frame2_values[1] == cycles2*8
assert rx_frame_values[1] + rx_frame2_values[1] == cycles*8
assert rx_frame_values[2] + rx_frame2_values[2] == sum(len(f.data) for f in test_frame)
assert rx_frame_values[3] + rx_frame2_values[3] == len(test_frame)
yield delay(100)
raise StopSimulation
return instances()
def test_bench():
os.chdir(os.path.dirname(os.path.abspath(__file__)))
sim = Simulation(bench())
sim.run()
if __name__ == '__main__':
print("Running test...")
test_bench()